About this website

This website was made with Quarto and hosted through GitHub pages.

The following packages were used in its making:

─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.1 (2023-06-16)
 os       Ubuntu 22.04.3 LTS
 system   x86_64, linux-gnu
 ui       X11
 language (EN)
 collate  C.UTF-8
 ctype    C.UTF-8
 tz       Europe/Paris
 date     2023-11-21
 pandoc   3.1.9 @ /opt/quarto/bin/tools/ (via rmarkdown)
 quarto   1.4.510

─ Packages ───────────────────────────────────────────────────────────────────
 ! package     * version date (UTC) lib source
 P bayesplot   * 1.10.0  2022-11-16 [?] CRAN (R 4.3.0)
 P broom       * 1.0.5   2023-06-09 [?] CRAN (R 4.3.0)
 P car         * 3.1-2   2023-03-30 [?] CRAN (R 4.3.0)
 P carData     * 3.0-5   2022-01-06 [?] CRAN (R 4.3.0)
 P circlize    * 0.4.15  2022-05-10 [?] CRAN (R 4.3.1)
 P cli         * 3.6.1   2023-03-23 [?] CRAN (R 4.3.0)
 P correlation * 0.8.4   2023-04-06 [?] CRAN (R 4.3.0)
 P crosstalk   * 1.2.0   2021-11-04 [?] CRAN (R 4.3.0)
 P DHARMa      * 0.4.6   2022-09-08 [?] CRAN (R 4.3.0)
 P downlit     * 0.4.3   2023-06-29 [?] CRAN (R 4.3.0)
 P dplyr       * 1.1.4   2023-11-17 [?] CRAN (R 4.3.1)
 P DT          * 0.30    2023-10-05 [?] CRAN (R 4.3.1)
 P emmeans     * 1.8.9   2023-10-17 [?] CRAN (R 4.3.1)
 P forecast    * 8.21.1  2023-08-31 [?] CRAN (R 4.3.0)
 P fs          * 1.6.3   2023-07-20 [?] CRAN (R 4.3.0)
 P ggdist      * 3.3.0   2023-05-13 [?] CRAN (R 4.3.0)
 P ggiraph     * 0.8.7   2023-03-17 [?] CRAN (R 4.3.1)
 P ggnewscale  * 0.4.9   2023-05-25 [?] CRAN (R 4.3.1)
 P ggplot2     * 3.4.4   2023-10-12 [?] CRAN (R 4.3.1)
 P ggtext      * 0.1.2   2022-09-16 [?] CRAN (R 4.3.0)
 P glmmTMB     * 1.1.5   2022-11-16 [?] CRAN (R 4.3.1)
 P gt          * 0.10.0  2023-10-07 [?] CRAN (R 4.3.1)
 P gtools      * 3.9.4   2022-11-27 [?] CRAN (R 4.3.0)
 P gtsummary   * 1.7.2   2023-07-15 [?] CRAN (R 4.3.1)
 P here        * 1.0.1   2020-12-13 [?] CRAN (R 4.3.0)
 P htmltools   * 0.5.7   2023-11-03 [?] CRAN (R 4.3.1)
 P insight     * 0.19.6  2023-10-12 [?] CRAN (R 4.3.1)
 P janitor     * 2.2.0   2023-02-02 [?] CRAN (R 4.3.0)
 P knitr       * 1.45    2023-10-30 [?] CRAN (R 4.3.1)
 P magrittr    * 2.0.3   2022-03-30 [?] CRAN (R 4.3.0)
 P Matrix      * 1.6-1.1 2023-09-18 [?] CRAN (R 4.3.1)
 P parameters  * 0.21.3  2023-11-02 [?] CRAN (R 4.3.1)
 P patchwork   * 1.1.3   2023-08-14 [?] CRAN (R 4.3.0)
 P performance * 0.10.8  2023-10-30 [?] CRAN (R 4.3.1)
 P pipebind    * 0.1.2   2023-08-30 [?] CRAN (R 4.3.0)
 P plotly      * 4.10.3  2023-10-21 [?] CRAN (R 4.3.1)
 P psych       * 2.3.9   2023-09-26 [?] CRAN (R 4.3.1)
 P purrr       * 1.0.2   2023-08-10 [?] CRAN (R 4.3.0)
 P qqplotr     * 0.0.6   2023-01-25 [?] CRAN (R 4.3.1)
 P reactable   * 0.4.4   2023-03-12 [?] CRAN (R 4.3.0)
 P readxl      * 1.4.3   2023-07-06 [?] CRAN (R 4.3.0)
 P renv        * 1.0.3   2023-09-19 [?] CRAN (R 4.3.1)
 P rlang       * 1.1.1   2023-04-28 [?] CRAN (R 4.3.0)
 P rmarkdown   * 2.25    2023-09-18 [?] CRAN (R 4.3.1)
 P see         * 0.8.1   2023-11-03 [?] CRAN (R 4.3.1)
 P sessioninfo * 1.2.2   2021-12-06 [?] CRAN (R 4.3.0)
 P sparkline   * 2.0     2016-11-12 [?] CRAN (R 4.3.1)
 P stringr     * 1.5.1   2023-11-14 [?] CRAN (R 4.3.1)
 P tibble      * 3.2.1   2023-03-20 [?] CRAN (R 4.3.0)
 P tidyr       * 1.3.0   2023-01-24 [?] CRAN (R 4.3.0)
 P xml2        * 1.3.5   2023-07-06 [?] CRAN (R 4.3.0)
 P yaml        * 2.3.7   2023-01-23 [?] CRAN (R 4.3.0)

 [1] /home/mar/Dev/Projects/R/DE-AoP-23-ghp/renv/library/R-4.3/x86_64-pc-linux-gnu
 [2] /home/mar/.cache/R/renv/sandbox/R-4.3/x86_64-pc-linux-gnu/9a444a72

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────

References

Allaire, J., Xie, Y., Dervieux, C., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W., & Iannone, R. (2023). Rmarkdown: Dynamic documents for r. https://github.com/rstudio/rmarkdown
Almeida, A., Loy, A., & Hofmann, H. (2018). ggplot2 compatible quantile-quantile plots in r. In The R Journal (No. 2; Vol. 10, pp. 248–261). https://doi.org/10.32614/RJ-2018-051
Almeida, A., Loy, A., & Hofmann, H. (2023). Qqplotr: Quantile-quantile plot extensions for ggplot2. https://github.com/aloy/qqplotr
Bache, S. M., & Wickham, H. (2022). Magrittr: A forward-pipe operator for r. https://magrittr.tidyverse.org
Bates, D., Maechler, M., & Jagan, M. (2023). Matrix: Sparse and dense matrix classes and methods. https://Matrix.R-forge.R-project.org
Bolker, B., Warnes, G. R., & Lumley, T. (2022). Gtools: Various r programming tools. https://github.com/r-gregmisc/gtools
Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378–400. https://doi.org/10.32614/RJ-2017-066
Brooks, M., Bolker, B., Kristensen, K., Maechler, M., Magnusson, A., Skaug, H., Nielsen, A., Berg, C., & van Bentham, K. (2022). glmmTMB: Generalized linear mixed models using template model builder. https://github.com/glmmTMB/glmmTMB
Campitelli, E. (2023). Ggnewscale: Multiple fill and colour scales in ggplot2. https://eliocamp.github.io/ggnewscale/
Cheng, J., & Sievert, C. (2021). Crosstalk: Inter-widget interactivity for HTML widgets. https://rstudio.github.io/crosstalk/
Cheng, J., Sievert, C., Schloerke, B., Chang, W., Xie, Y., & Allen, J. (2023). Htmltools: Tools for HTML. https://github.com/rstudio/htmltools
Csárdi, G. (2023). Cli: Helpers for developing command line interfaces. https://cli.r-lib.org
Firke, S. (2023). Janitor: Simple tools for examining and cleaning dirty data. https://github.com/sfirke/janitor
Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/
Fox, J., Weisberg, S., & Price, B. (2022). carData: Companion to applied regression data sets. https://r-forge.r-project.org/projects/car/
Fox, J., Weisberg, S., & Price, B. (2023). Car: Companion to applied regression. https://r-forge.r-project.org/projects/car/
Gabry, J., & Mahr, T. (2022). Bayesplot: Plotting for bayesian models. https://mc-stan.org/bayesplot/
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in bayesian workflow. J. R. Stat. Soc. A, 182, 389–402. https://doi.org/10.1111/rssa.12378
Garbett, S. P., Stephens, J., Simonov, K., Xie, Y., Dong, Z., Wickham, H., Horner, J., reikoch, Beasley, W., O’Connor, B., Warnes, G. R., Quinn, M., & Kamvar, Z. N. (2023). Yaml: Methods to convert r data to YAML and back. https://github.com/vubiostat/r-yaml/
Gohel, D., & Skintzos, P. (2023). Ggiraph: Make ggplot2 graphics interactive. https://davidgohel.github.io/ggiraph/
Gu, Z. (2022). Circlize: Circular visualization. https://github.com/jokergoo/circlize
Gu, Z., Gu, L., Eils, R., Schlesner, M., & Brors, B. (2014). Circlize implements and enhances circular visualization in r. Bioinformatics, 30, 2811–2812.
Hartig, F. (2022). DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. http://florianhartig.github.io/DHARMa/
Henry, L., & Wickham, H. (2023). Rlang: Functions for base types and core r and tidyverse features. https://rlang.r-lib.org
Hester, J., Wickham, H., & Csárdi, G. (2023). Fs: Cross-platform file system operations based on libuv. https://fs.r-lib.org
Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 26(3), 1–22. https://doi.org/10.18637/jss.v027.i03
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., Kuroptev, K., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E., & Yasmeen, F. (2023). Forecast: Forecasting functions for time series and linear models. https://pkg.robjhyndman.com/forecast/
Iannone, R., Cheng, J., Schloerke, B., Hughes, E., Lauer, A., & Seo, J. (2023). Gt: Easily create presentation-ready display tables. https://gt.rstudio.com
Kay, M. (2023). Ggdist: Visualizations of distributions and uncertainty. https://mjskay.github.io/ggdist/
Lenth, R. V. (2023). Emmeans: Estimated marginal means, aka least-squares means. https://github.com/rvlenth/emmeans
Lin, G. (2023). Reactable: Interactive data tables for r. https://glin.github.io/reactable/
Lüdecke, D., Ben-Shachar, M. S., Patil, I., & Makowski, D. (2020). Extracting, computing and exploring the parameters of statistical models using R. Journal of Open Source Software, 5(53), 2445. https://doi.org/10.21105/joss.02445
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Højsgaard, S., & Wiernik, B. M. (2023). Parameters: Processing of model parameters. https://easystats.github.io/parameters/
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Wiernik, B. M. (2023). Performance: Assessment of regression models performance. https://easystats.github.io/performance/
Lüdecke, D., Makowski, D., Patil, I., Ben-Shachar, M. S., Wiernik, B. M., & Waggoner, P. (2023). See: Model visualisation toolbox for easystats and ggplot2. https://easystats.github.io/see/
Lüdecke, D., Makowski, D., Patil, I., Waggoner, P., Ben-Shachar, M. S., Wiernik, B. M., Arel-Bundock, V., & Bacher, E. (2023). Insight: Easy access to model information for various model objects. https://easystats.github.io/insight/
Lüdecke, D., Patil, I., Ben-Shachar, M. S., Wiernik, B. M., Waggoner, P., & Makowski, D. (2021). see: An R package for visualizing statistical models. Journal of Open Source Software, 6(64), 3393. https://doi.org/10.21105/joss.03393
Lüdecke, D., Waggoner, P., & Makowski, D. (2019). insight: A unified interface to access information from model objects in R. Journal of Open Source Software, 4(38), 1412. https://doi.org/10.21105/joss.01412
Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and algorithms for correlation analysis in R. Journal of Open Source Software, 5(51), 2306. https://doi.org/10.21105/joss.02306
Makowski, D., Wiernik, B. M., Patil, I., Lüdecke, D., & Ben-Shachar, M. S. (2022). correlation: Methods for correlation analysis. https://CRAN.R-project.org/package=correlation
Makowski, D., Wiernik, B. M., Patil, I., Lüdecke, D., & Ben-Shachar, M. S. (2023). Correlation: Methods for correlation analysis. https://easystats.github.io/correlation/
Müller, K. (2020). Here: A simpler way to find your files. https://here.r-lib.org/
Müller, K., & Wickham, H. (2023). Tibble: Simple data frames. https://tibble.tidyverse.org/
Pedersen, T. L. (2023). Patchwork: The composer of plots. https://patchwork.data-imaginist.com
Revelle, W. (2023). Psych: Procedures for psychological, psychometric, and personality research. https://personality-project.org/r/psych/ https://personality-project.org/r/psych-manual.pdf
Robinson, D., Hayes, A., & Couch, S. (2023). Broom: Convert statistical objects into tidy tibbles. https://broom.tidymodels.org/
Sievert, C. (2020). Interactive web-based data visualization with r, plotly, and shiny. Chapman; Hall/CRC. https://plotly-r.com
Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., & Despouy, P. (2023). Plotly: Create interactive web graphics via plotly.js. https://plotly-r.com
Sjoberg, D. D., Whiting, K., Curry, M., Lavery, J. A., & Larmarange, J. (2021). Reproducible summary tables with the gtsummary package. The R Journal, 13, 570–580. https://doi.org/10.32614/RJ-2021-053
Ushey, K., & Wickham, H. (2023). Renv: Project environments. https://rstudio.github.io/renv/
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org
Wickham, H. (2023a). Downlit: Syntax highlighting and automatic linking. https://downlit.r-lib.org/
Wickham, H. (2023b). Stringr: Simple, consistent wrappers for common string operations. https://stringr.tidyverse.org
Wickham, H., & Bryan, J. (2023). Readxl: Read excel files. https://readxl.tidyverse.org
Wickham, H., Chang, W., Flight, R., Müller, K., & Hester, J. (2021). Sessioninfo: R session information. https://github.com/r-lib/sessioninfo#readme
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dunnington, D. (2023). ggplot2: Create elegant data visualisations using the grammar of graphics. https://ggplot2.tidyverse.org
Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar of data manipulation. https://dplyr.tidyverse.org
Wickham, H., & Henry, L. (2023). Purrr: Functional programming tools. https://purrr.tidyverse.org/
Wickham, H., Hester, J., & Ooms, J. (2023). xml2: Parse XML. https://xml2.r-lib.org/
Wickham, H., Vaughan, D., & Girlich, M. (2023). Tidyr: Tidy messy data. https://tidyr.tidyverse.org
Wiernik, B. M. (2023). Pipebind: Flexible binding for complex function evaluation with the base r |> pipe. https://github.com/bwiernik/pipebind/
Wilke, C. O., & Wiernik, B. M. (2022). Ggtext: Improved text rendering support for ggplot2. https://wilkelab.org/ggtext/
Xie, Y. (2014). Knitr: A comprehensive tool for reproducible research in R. In V. Stodden, F. Leisch, & R. D. Peng (Eds.), Implementing reproducible computational research. Chapman; Hall/CRC.
Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman; Hall/CRC. https://yihui.org/knitr/
Xie, Y. (2023). Knitr: A general-purpose package for dynamic report generation in r. https://yihui.org/knitr/
Xie, Y., Allaire, J. J., & Grolemund, G. (2018). R markdown: The definitive guide. Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown
Xie, Y., Cheng, J., & Tan, X. (2023). DT: A wrapper of the JavaScript library DataTables. https://github.com/rstudio/DT
Xie, Y., Dervieux, C., & Riederer, E. (2020). R markdown cookbook. Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown-cookbook
Back to top