17 Adults (Morris)
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Path_Efficiency |
Path Efficiency |
Latency_Plat |
Latency to Platform (s) |
Freezing |
Freezing (s) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Path_Efficiency |
Path Efficiency |
Latency_Plat |
Latency to Platform (s) |
Freezing |
Freezing (s) |
❖ Correlations
17.1 Path Efficiency
17.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.153 | 0.095 | 0.009 | 0.624 | 0.184 | 0.057 | 0.336 | 0.683 | −0.983 | 14 |
IH | 0.164 | 0.131 | 0.017 | 0.801 | 0.241 | 0.047 | 0.389 | 0.993 | −0.861 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.153 | 0.095 | 0.009 | 0.624 | 0.184 | 0.057 | 0.336 | 0.683 | −0.983 | 14 |
IH | 0.164 | 0.131 | 0.017 | 0.801 | 0.241 | 0.047 | 0.389 | 0.993 | −0.861 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.28 | 0.121 | 0.015 | 0.432 | 0.255 | 0.116 | 0.444 | 0.091 | −1.523 | 14 |
IH | 0.243 | 0.082 | 0.007 | 0.338 | 0.159 | 0.114 | 0.339 | −0.255 | −1.533 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.28 | 0.121 | 0.015 | 0.432 | 0.255 | 0.116 | 0.444 | 0.091 | −1.523 | 14 |
IH | 0.243 | 0.082 | 0.007 | 0.338 | 0.159 | 0.114 | 0.339 | −0.255 | −1.533 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.379 | 0.159 | 0.025 | 0.419 | 0.261 | 0.092 | 0.62 | −0.386 | −0.817 | 14 |
IH | 0.287 | 0.104 | 0.011 | 0.364 | 0.202 | 0.151 | 0.46 | 0.259 | −1.132 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.379 | 0.159 | 0.025 | 0.419 | 0.261 | 0.092 | 0.62 | −0.386 | −0.817 | 14 |
IH | 0.287 | 0.104 | 0.011 | 0.364 | 0.202 | 0.151 | 0.46 | 0.259 | −1.132 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.421 | 0.151 | 0.023 | 0.358 | 0.239 | 0.149 | 0.701 | −0.031 | −0.436 | 14 |
IH | 0.288 | 0.154 | 0.024 | 0.533 | 0.257 | 0.114 | 0.572 | 0.403 | −0.668 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.421 | 0.151 | 0.023 | 0.358 | 0.239 | 0.149 | 0.701 | −0.031 | −0.436 | 14 |
IH | 0.288 | 0.154 | 0.024 | 0.533 | 0.257 | 0.114 | 0.572 | 0.403 | −0.668 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.398 | 0.169 | 0.029 | 0.426 | 0.278 | 0.075 | 0.651 | −0.159 | −0.468 | 14 |
IH | 0.247 | 0.067 | 0.005 | 0.273 | 0.078 | 0.146 | 0.391 | 0.781 | 1.625 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.398 | 0.169 | 0.029 | 0.426 | 0.278 | 0.075 | 0.651 | −0.159 | −0.468 | 14 |
IH | 0.247 | 0.067 | 0.005 | 0.273 | 0.078 | 0.146 | 0.391 | 0.781 | 1.625 | 10 |
❖ Evolution:
17.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Path_Efficiency ~ Condition * Stage + ar1(Stage +
0 | Mouse), data = data, family = beta_family("logit"), REML = TRUE,
ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-128.75 | -125.32 | -92.52 | 0.71 | 0.71 | 0 | 0.07 | 20.99 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-128.75 | -125.32 | -92.52 | 0.71 | 0.71 | 0 | 0.07 | 20.99 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Path_Efficiency ~ Condition * Stage + (Stage ||
data = data, family = beta_family("logit"), REML = TRUE,
Mouse), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-121.08 | -115.79 | -76.48 | 0.65 | 0.10 | 15.49 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-121.08 | -115.79 | -76.48 | 0.65 | 0.10 | 15.49 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
17.1.3 Effects Analysis
17.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.384 | 0.032 | (0.33, 0.45) | -11.423 | < .001 |
Condition1 | 1.190 | 0.098 | (1.01, 1.40) | 2.116 | 0.034 * |
Stage1 | 0.488 | 0.058 | (0.39, 0.62) | -5.985 | < .001 |
Stage2 | 0.931 | 0.097 | (0.76, 1.14) | -0.691 | 0.490 |
Stage3 | 1.287 | 0.127 | (1.06, 1.56) | 2.567 | 0.010 ** |
Stage4 | 1.397 | 0.140 | (1.15, 1.70) | 3.323 | < .001 |
Condition1 * Stage1 | 0.823 | 0.099 | (0.65, 1.04) | -1.623 | 0.105 |
Condition1 * Stage2 | 0.912 | 0.095 | (0.74, 1.12) | -0.886 | 0.376 |
Condition1 * Stage3 | 1.018 | 0.100 | (0.84, 1.23) | 0.181 | 0.856 |
Condition1 * Stage4 | 1.131 | 0.113 | (0.93, 1.38) | 1.227 | 0.220 |
Model: Path_Efficiency ~ Condition * Stage (120 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.384 | 0.032 | (0.33, 0.45) | -11.423 | < .001 |
Condition1 | 1.190 | 0.098 | (1.01, 1.40) | 2.116 | 0.034 * |
Stage1 | 0.488 | 0.058 | (0.39, 0.62) | -5.985 | < .001 |
Stage2 | 0.931 | 0.097 | (0.76, 1.14) | -0.691 | 0.490 |
Stage3 | 1.287 | 0.127 | (1.06, 1.56) | 2.567 | 0.010 ** |
Stage4 | 1.397 | 0.140 | (1.15, 1.70) | 3.323 | < .001 |
Condition1 * Stage1 | 0.823 | 0.099 | (0.65, 1.04) | -1.623 | 0.105 |
Condition1 * Stage2 | 0.912 | 0.095 | (0.74, 1.12) | -0.886 | 0.376 |
Condition1 * Stage3 | 1.018 | 0.100 | (0.84, 1.23) | 0.181 | 0.856 |
Condition1 * Stage4 | 1.131 | 0.113 | (0.93, 1.38) | 1.227 | 0.220 |
Model: Path_Efficiency ~ Condition * Stage (120 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.48 | 1 | 0.030 * |
Stage | 39.05 | 4 | <0.001 *** |
Condition:Stage | 4.24 | 4 | 0.380 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.48 | 1 | 0.030 * |
Stage | 39.05 | 4 | <0.001 *** |
Condition:Stage | 4.24 | 4 | 0.380 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | -159.15 | -136.85 | 87.58 | -175.15 | |||
mod_full | 13 | -158.68 | -122.44 | 92.34 | -184.68 | 9.53 | 5 | 0.090 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | -159.15 | -136.85 | 87.58 | -175.15 | |||
mod_full | 13 | -158.68 | -122.44 | 92.34 | -184.68 | 9.53 | 5 | 0.090 |
17.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.314 | 0.023 | 117 | 0.27 | 0.361 |
IH | 0.244 | 0.023 | 117 | 0.201 | 0.294 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.314 | 0.023 | 117 | 0.27 | 0.361 |
IH | 0.244 | 0.023 | 117 | 0.201 | 0.294 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 0.707 | 0.116 | 117 | 0.511 | 0.978 | 1 | −2.116 | 0.036 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 0.707 | 0.116 | 117 | 0.511 | 0.978 | 1 | −2.116 | 0.036 * |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 0.158 | 0.02 | 117 | 0.123 | 0.201 |
P57 | 0.263 | 0.026 | 117 | 0.215 | 0.319 |
P58 | 0.331 | 0.029 | 117 | 0.276 | 0.391 |
P59 | 0.349 | 0.029 | 117 | 0.293 | 0.41 |
P60 | 0.32 | 0.029 | 117 | 0.266 | 0.38 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 0.158 | 0.02 | 117 | 0.123 | 0.201 |
P57 | 0.263 | 0.026 | 117 | 0.215 | 0.319 |
P58 | 0.331 | 0.029 | 117 | 0.276 | 0.391 |
P59 | 0.349 | 0.029 | 117 | 0.293 | 0.41 |
P60 | 0.32 | 0.029 | 117 | 0.266 | 0.38 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 1.907 | 0.321 | 117 | 1.366 | 2.663 | 1 | 3.83 | <0.001 *** |
P58 / P57 | 1.383 | 0.215 | 117 | 1.017 | 1.881 | 1 | 2.087 | 0.039 * |
P59 / P58 | 1.085 | 0.164 | 117 | 0.804 | 1.463 | 1 | 0.539 | 0.591 |
P60 / P59 | 0.877 | 0.134 | 117 | 0.648 | 1.186 | 1 | −0.862 | 0.390 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 1.907 | 0.321 | 117 | 1.366 | 2.663 | 1 | 3.83 | <0.001 *** |
P58 / P57 | 1.383 | 0.215 | 117 | 1.017 | 1.881 | 1 | 2.087 | 0.039 * |
P59 / P58 | 1.085 | 0.164 | 117 | 0.804 | 1.463 | 1 | 0.539 | 0.591 |
P60 / P59 | 0.877 | 0.134 | 117 | 0.648 | 1.186 | 1 | −0.862 | 0.390 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.155 | 0.025 | 117 | 0.111 | 0.212 |
IH | 0.161 | 0.03 | 117 | 0.11 | 0.229 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.155 | 0.025 | 117 | 0.111 | 0.212 |
IH | 0.161 | 0.03 | 117 | 0.11 | 0.229 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.28 | 0.035 | 117 | 0.216 | 0.353 |
IH | 0.248 | 0.039 | 117 | 0.179 | 0.332 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.28 | 0.035 | 117 | 0.216 | 0.353 |
IH | 0.248 | 0.039 | 117 | 0.179 | 0.332 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.375 | 0.039 | 117 | 0.302 | 0.454 |
IH | 0.29 | 0.042 | 117 | 0.215 | 0.379 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.375 | 0.039 | 117 | 0.302 | 0.454 |
IH | 0.29 | 0.042 | 117 | 0.215 | 0.379 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.419 | 0.04 | 117 | 0.343 | 0.5 |
IH | 0.285 | 0.041 | 117 | 0.211 | 0.373 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.419 | 0.04 | 117 | 0.343 | 0.5 |
IH | 0.285 | 0.041 | 117 | 0.211 | 0.373 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.393 | 0.039 | 117 | 0.319 | 0.473 |
IH | 0.255 | 0.039 | 117 | 0.185 | 0.34 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.393 | 0.039 | 117 | 0.319 | 0.473 |
IH | 0.255 | 0.039 | 117 | 0.185 | 0.34 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.96 | 0.28 | 117 | 0.539 | 1.71 | 1 | −0.141 | 0.888 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.96 | 0.28 | 117 | 0.539 | 1.71 | 1 | −0.141 | 0.888 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.177 | 0.316 | 117 | 0.692 | 2.004 | 1 | 0.609 | 0.544 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.177 | 0.316 | 117 | 0.692 | 2.004 | 1 | 0.609 | 0.544 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.466 | 0.382 | 117 | 0.876 | 2.456 | 1 | 1.471 | 0.144 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.466 | 0.382 | 117 | 0.876 | 2.456 | 1 | 1.471 | 0.144 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.81 | 0.469 | 117 | 1.083 | 3.023 | 1 | 2.289 | 0.024 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.81 | 0.469 | 117 | 1.083 | 3.023 | 1 | 2.289 | 0.024 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.893 | 0.499 | 117 | 1.123 | 3.192 | 1 | 2.419 | 0.017 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.893 | 0.499 | 117 | 1.123 | 3.192 | 1 | 2.419 | 0.017 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Temporal plot:
17.2 Latency to Platform
17.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 44.752 | 9.35 | 87.424 | 0.209 | 12.231 | 23.9 | 60 | −0.542 | 0.653 | 14 |
IH | 45.938 | 14.126 | 199.551 | 0.308 | 29.15 | 28.75 | 60 | −0.15 | −2.21 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 44.752 | 9.35 | 87.424 | 0.209 | 12.231 | 23.9 | 60 | −0.542 | 0.653 | 14 |
IH | 45.938 | 14.126 | 199.551 | 0.308 | 29.15 | 28.75 | 60 | −0.15 | −2.21 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 31.6 | 10.934 | 119.549 | 0.346 | 14.819 | 11.85 | 47.325 | −0.465 | −0.348 | 14 |
IH | 36.498 | 6.822 | 46.538 | 0.187 | 10.775 | 26.725 | 48.4 | 0.331 | −0.783 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 31.6 | 10.934 | 119.549 | 0.346 | 14.819 | 11.85 | 47.325 | −0.465 | −0.348 | 14 |
IH | 36.498 | 6.822 | 46.538 | 0.187 | 10.775 | 26.725 | 48.4 | 0.331 | −0.783 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 24.268 | 10.688 | 114.236 | 0.44 | 9.281 | 12.925 | 56.175 | 2.177 | 6.257 | 14 |
IH | 35.822 | 11.924 | 142.172 | 0.333 | 23.938 | 21.375 | 54.025 | 0.014 | −1.567 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 24.268 | 10.688 | 114.236 | 0.44 | 9.281 | 12.925 | 56.175 | 2.177 | 6.257 | 14 |
IH | 35.822 | 11.924 | 142.172 | 0.333 | 23.938 | 21.375 | 54.025 | 0.014 | −1.567 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.282 | 8.346 | 69.66 | 0.433 | 8.288 | 9.65 | 42.575 | 1.792 | 4.133 | 14 |
IH | 34.237 | 13.006 | 169.168 | 0.38 | 23.131 | 17.625 | 55.65 | 0.231 | −1.304 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.282 | 8.346 | 69.66 | 0.433 | 8.288 | 9.65 | 42.575 | 1.792 | 4.133 | 14 |
IH | 34.237 | 13.006 | 169.168 | 0.38 | 23.131 | 17.625 | 55.65 | 0.231 | −1.304 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.462 | 12.761 | 162.839 | 0.656 | 11.55 | 8.9 | 60 | 2.724 | 8.78 | 14 |
IH | 31.928 | 9.676 | 93.623 | 0.303 | 15.462 | 18.525 | 45.975 | 0.058 | −1.102 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.462 | 12.761 | 162.839 | 0.656 | 11.55 | 8.9 | 60 | 2.724 | 8.78 | 14 |
IH | 31.928 | 9.676 | 93.623 | 0.303 | 15.462 | 18.525 | 45.975 | 0.058 | −1.102 | 10 |
❖ Evolution:
17.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Latency_Plat ~ Condition * Stage + ar1(Stage +
0 | Mouse), data = data, family = Gamma("log"), REML = TRUE,
ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
942.49 | 945.92 | 978.73 | 0.62 | 0.62 | 0 | 6.24 | 0.26 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
942.49 | 945.92 | 978.73 | 0.62 | 0.62 | 0 | 6.24 | 0.26 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Latency_Plat ~ Condition * Stage + (Stage ||
data = data, family = Gamma("log"), REML = TRUE,
Mouse), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
948.71 | 954.00 | 993.31 | 0.57 | 7.41 | 0.28 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
948.71 | 954.00 | 993.31 | 0.57 | 7.41 | 0.28 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
17.2.3 Effects Analysis
17.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 29.883 | 1.482 | (27.11, 32.93) | 68.496 | < .001 |
Condition1 | 0.839 | 0.041 | (0.76, 0.92) | -3.607 | < .001 |
Stage1 | 1.494 | 0.089 | (1.33, 1.68) | 6.766 | < .001 |
Stage2 | 1.109 | 0.061 | (1.00, 1.24) | 1.878 | 0.060 |
Stage3 | 0.946 | 0.051 | (0.85, 1.05) | -1.034 | 0.301 |
Stage4 | 0.817 | 0.045 | (0.73, 0.91) | -3.658 | < .001 |
Condition1 * Stage1 | 1.181 | 0.070 | (1.05, 1.33) | 2.786 | 0.005 ** |
Condition1 * Stage2 | 1.090 | 0.061 | (0.98, 1.22) | 1.549 | 0.121 |
Condition1 * Stage3 | 0.973 | 0.052 | (0.88, 1.08) | -0.510 | 0.610 |
Condition1 * Stage4 | 0.891 | 0.049 | (0.80, 0.99) | -2.078 | 0.038 * |
Model: Latency_Plat ~ Condition * Stage (120 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 29.883 | 1.482 | (27.11, 32.93) | 68.496 | < .001 |
Condition1 | 0.839 | 0.041 | (0.76, 0.92) | -3.607 | < .001 |
Stage1 | 1.494 | 0.089 | (1.33, 1.68) | 6.766 | < .001 |
Stage2 | 1.109 | 0.061 | (1.00, 1.24) | 1.878 | 0.060 |
Stage3 | 0.946 | 0.051 | (0.85, 1.05) | -1.034 | 0.301 |
Stage4 | 0.817 | 0.045 | (0.73, 0.91) | -3.658 | < .001 |
Condition1 * Stage1 | 1.181 | 0.070 | (1.05, 1.33) | 2.786 | 0.005 ** |
Condition1 * Stage2 | 1.090 | 0.061 | (0.98, 1.22) | 1.549 | 0.121 |
Condition1 * Stage3 | 0.973 | 0.052 | (0.88, 1.08) | -0.510 | 0.610 |
Condition1 * Stage4 | 0.891 | 0.049 | (0.80, 0.99) | -2.078 | 0.038 * |
Model: Latency_Plat ~ Condition * Stage (120 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 13.01 | 1 | <0.001 *** |
Stage | 54.14 | 4 | <0.001 *** |
Condition:Stage | 11.63 | 4 | 0.020 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 13.01 | 1 | <0.001 *** |
Stage | 54.14 | 4 | <0.001 *** |
Condition:Stage | 11.63 | 4 | 0.020 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | 912.35 | 934.65 | -448.18 | 896.35 | |||
mod_full | 13 | 900.61 | 936.85 | -437.31 | 874.61 | 21.74 | 5 | <0.001 *** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | 912.35 | 934.65 | -448.18 | 896.35 | |||
mod_full | 13 | 900.61 | 936.85 | -437.31 | 874.61 | 21.74 | 5 | <0.001 *** |
17.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 25.077 | 1.593 | 117 | 22.113 | 28.439 |
IH | 35.609 | 2.667 | 117 | 30.7 | 41.302 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 25.077 | 1.593 | 117 | 22.113 | 28.439 |
IH | 35.609 | 2.667 | 117 | 30.7 | 41.302 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 1.42 | 0.138 | 117 | 1.171 | 1.721 | 1 | 3.607 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 1.42 | 0.138 | 117 | 1.171 | 1.721 | 1 | 3.607 | <0.001 *** |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 44.659 | 3.375 | 117 | 38.452 | 51.869 |
P57 | 33.153 | 2.486 | 117 | 28.578 | 38.461 |
P58 | 28.263 | 2.125 | 117 | 24.354 | 32.8 |
P59 | 24.415 | 1.838 | 117 | 21.034 | 28.339 |
P60 | 23.322 | 1.763 | 117 | 20.079 | 27.089 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 44.659 | 3.375 | 117 | 38.452 | 51.869 |
P57 | 33.153 | 2.486 | 117 | 28.578 | 38.461 |
P58 | 28.263 | 2.125 | 117 | 24.354 | 32.8 |
P59 | 24.415 | 1.838 | 117 | 21.034 | 28.339 |
P60 | 23.322 | 1.763 | 117 | 20.079 | 27.089 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 0.742 | 0.063 | 117 | 0.628 | 0.878 | 1 | −3.518 | <0.001 *** |
P58 / P57 | 0.853 | 0.072 | 117 | 0.721 | 1.008 | 1 | −1.888 | 0.061 |
P59 / P58 | 0.864 | 0.073 | 117 | 0.731 | 1.021 | 1 | −1.733 | 0.086 |
P60 / P59 | 0.955 | 0.081 | 117 | 0.808 | 1.129 | 1 | −0.541 | 0.589 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 0.742 | 0.063 | 117 | 0.628 | 0.878 | 1 | −3.518 | <0.001 *** |
P58 / P57 | 0.853 | 0.072 | 117 | 0.721 | 1.008 | 1 | −1.888 | 0.061 |
P59 / P58 | 0.864 | 0.073 | 117 | 0.731 | 1.021 | 1 | −1.733 | 0.086 |
P60 / P59 | 0.955 | 0.081 | 117 | 0.808 | 1.129 | 1 | −0.541 | 0.589 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 44.248 | 4.267 | 117 | 36.555 | 53.559 |
IH | 45.075 | 5.206 | 117 | 35.859 | 56.659 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 44.248 | 4.267 | 117 | 36.555 | 53.559 |
IH | 45.075 | 5.206 | 117 | 35.859 | 56.659 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 30.322 | 2.953 | 117 | 25.003 | 36.772 |
IH | 36.249 | 4.126 | 117 | 28.934 | 45.414 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 30.322 | 2.953 | 117 | 25.003 | 36.772 |
IH | 36.249 | 4.126 | 117 | 28.934 | 45.414 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 23.076 | 2.23 | 117 | 19.056 | 27.944 |
IH | 34.617 | 3.962 | 117 | 27.596 | 43.424 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 23.076 | 2.23 | 117 | 19.056 | 27.944 |
IH | 34.617 | 3.962 | 117 | 27.596 | 43.424 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.264 | 1.764 | 117 | 15.085 | 22.114 |
IH | 32.637 | 3.743 | 117 | 26.005 | 40.96 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.264 | 1.764 | 117 | 15.085 | 22.114 |
IH | 32.637 | 3.743 | 117 | 26.005 | 40.96 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 17.539 | 1.715 | 117 | 14.45 | 21.287 |
IH | 31.012 | 3.543 | 117 | 24.733 | 38.886 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 17.539 | 1.715 | 117 | 14.45 | 21.287 |
IH | 31.012 | 3.543 | 117 | 24.733 | 38.886 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.982 | 0.147 | 117 | 0.73 | 1.321 | 1 | −0.124 | 0.902 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.982 | 0.147 | 117 | 0.73 | 1.321 | 1 | −0.124 | 0.902 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.836 | 0.125 | 117 | 0.622 | 1.125 | 1 | −1.193 | 0.235 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.836 | 0.125 | 117 | 0.622 | 1.125 | 1 | −1.193 | 0.235 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.667 | 0.099 | 117 | 0.496 | 0.896 | 1 | −2.717 | 0.008 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.667 | 0.099 | 117 | 0.496 | 0.896 | 1 | −2.717 | 0.008 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.56 | 0.084 | 117 | 0.416 | 0.752 | 1 | −3.887 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.56 | 0.084 | 117 | 0.416 | 0.752 | 1 | −3.887 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.566 | 0.085 | 117 | 0.421 | 0.761 | 1 | −3.811 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.566 | 0.085 | 117 | 0.421 | 0.761 | 1 | −3.811 | <0.001 *** |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Temporal plot:
17.3 Freezing Time:
17.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.684 | 0.598 | 0.357 | 0.875 | 0.837 | 0.01 | 1.875 | 0.862 | −0.051 | 14 |
IH | 1.326 | 1.782 | 3.176 | 1.344 | 1.781 | 0.01 | 5.75 | 2.047 | 4.26 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.684 | 0.598 | 0.357 | 0.875 | 0.837 | 0.01 | 1.875 | 0.862 | −0.051 | 14 |
IH | 1.326 | 1.782 | 3.176 | 1.344 | 1.781 | 0.01 | 5.75 | 2.047 | 4.26 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.253 | 1.552 | 2.409 | 1.239 | 1.45 | 0.01 | 5.9 | 2.351 | 6.253 | 14 |
IH | 2.855 | 1.615 | 2.607 | 0.566 | 3.194 | 0.75 | 5.025 | 0.1 | −1.72 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.253 | 1.552 | 2.409 | 1.239 | 1.45 | 0.01 | 5.9 | 2.351 | 6.253 | 14 |
IH | 2.855 | 1.615 | 2.607 | 0.566 | 3.194 | 0.75 | 5.025 | 0.1 | −1.72 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.309 | 2.48 | 6.148 | 1.074 | 1.769 | 0.525 | 10.3 | 2.899 | 9.466 | 14 |
IH | 6.907 | 6.375 | 40.641 | 0.923 | 8.162 | 0.95 | 20.55 | 1.245 | 1.033 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.309 | 2.48 | 6.148 | 1.074 | 1.769 | 0.525 | 10.3 | 2.899 | 9.466 | 14 |
IH | 6.907 | 6.375 | 40.641 | 0.923 | 8.162 | 0.95 | 20.55 | 1.245 | 1.033 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.296 | 2.728 | 7.443 | 0.828 | 3.994 | 0.35 | 9.225 | 1.041 | 0.146 | 14 |
IH | 8.135 | 4.117 | 16.951 | 0.506 | 5.325 | 1.675 | 16.15 | 0.212 | 0.673 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.296 | 2.728 | 7.443 | 0.828 | 3.994 | 0.35 | 9.225 | 1.041 | 0.146 | 14 |
IH | 8.135 | 4.117 | 16.951 | 0.506 | 5.325 | 1.675 | 16.15 | 0.212 | 0.673 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.22 | 3.359 | 11.28 | 1.043 | 3.319 | 0.425 | 13.35 | 2.345 | 6.511 | 14 |
IH | 9.428 | 6.196 | 38.392 | 0.657 | 10.181 | 3.5 | 21.85 | 0.941 | 0.022 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.22 | 3.359 | 11.28 | 1.043 | 3.319 | 0.425 | 13.35 | 2.345 | 6.511 | 14 |
IH | 9.428 | 6.196 | 38.392 | 0.657 | 10.181 | 3.5 | 21.85 | 0.941 | 0.022 | 10 |
❖ Evolution:
17.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Freezing ~ Condition * Stage + ar1(Stage +
0 | Mouse), data = data, family = Gamma("log"), REML = TRUE,
ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
509.15 | 512.58 | 545.38 | 0.51 | 0.51 | 0 | 2.39 | 0.82 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
509.15 | 512.58 | 545.38 | 0.51 | 0.51 | 0 | 2.39 | 0.82 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Freezing ~ Condition * Stage + (Stage || Mouse),
data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
513.31 | 518.59 | 557.91 | 0.54 | 2.11 | 0.79 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
513.31 | 518.59 | 557.91 | 0.54 | 2.11 | 0.79 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
17.3.3 Effects Analysis
17.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.400 | 0.351 | (1.80, 3.20) | 5.982 | < .001 |
Condition1 | 0.632 | 0.087 | (0.48, 0.83) | -3.331 | < .001 |
Stage1 | 0.310 | 0.054 | (0.22, 0.44) | -6.767 | < .001 |
Stage2 | 0.666 | 0.107 | (0.49, 0.91) | -2.539 | 0.011 * |
Stage3 | 1.332 | 0.210 | (0.98, 1.81) | 1.819 | 0.069 |
Stage4 | 1.838 | 0.292 | (1.35, 2.51) | 3.838 | < .001 |
Condition1 * Stage1 | 1.312 | 0.224 | (0.94, 1.83) | 1.592 | 0.111 |
Condition1 * Stage2 | 0.960 | 0.155 | (0.70, 1.32) | -0.251 | 0.802 |
Condition1 * Stage3 | 0.949 | 0.149 | (0.70, 1.29) | -0.336 | 0.737 |
Condition1 * Stage4 | 0.966 | 0.152 | (0.71, 1.31) | -0.220 | 0.826 |
Model: Freezing ~ Condition * Stage (120 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.400 | 0.351 | (1.80, 3.20) | 5.982 | < .001 |
Condition1 | 0.632 | 0.087 | (0.48, 0.83) | -3.331 | < .001 |
Stage1 | 0.310 | 0.054 | (0.22, 0.44) | -6.767 | < .001 |
Stage2 | 0.666 | 0.107 | (0.49, 0.91) | -2.539 | 0.011 * |
Stage3 | 1.332 | 0.210 | (0.98, 1.81) | 1.819 | 0.069 |
Stage4 | 1.838 | 0.292 | (1.35, 2.51) | 3.838 | < .001 |
Condition1 * Stage1 | 1.312 | 0.224 | (0.94, 1.83) | 1.592 | 0.111 |
Condition1 * Stage2 | 0.960 | 0.155 | (0.70, 1.32) | -0.251 | 0.802 |
Condition1 * Stage3 | 0.949 | 0.149 | (0.70, 1.29) | -0.336 | 0.737 |
Condition1 * Stage4 | 0.966 | 0.152 | (0.71, 1.31) | -0.220 | 0.826 |
Model: Freezing ~ Condition * Stage (120 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 11.10 | 1 | <0.001 *** |
Stage | 66.84 | 4 | <0.001 *** |
Condition:Stage | 2.75 | 4 | 0.600 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 11.10 | 1 | <0.001 *** |
Stage | 66.84 | 4 | <0.001 *** |
Condition:Stage | 2.75 | 4 | 0.600 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | 491.37 | 513.67 | -237.69 | 475.37 | |||
mod_full | 13 | 488.17 | 524.41 | -231.08 | 462.17 | 13.20 | 5 | 0.020 * |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 8 | 491.37 | 513.67 | -237.69 | 475.37 | |||
mod_full | 13 | 488.17 | 524.41 | -231.08 | 462.17 | 13.20 | 5 | 0.020 * |
17.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.517 | 0.281 | 117 | 1.051 | 2.188 |
IH | 3.797 | 0.819 | 117 | 2.477 | 5.82 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.517 | 0.281 | 117 | 1.051 | 2.188 |
IH | 3.797 | 0.819 | 117 | 2.477 | 5.82 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 2.503 | 0.69 | 117 | 1.451 | 4.319 | 1 | 3.331 | 0.001 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 2.503 | 0.69 | 117 | 1.451 | 4.319 | 1 | 3.331 | 0.001 ** |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 0.745 | 0.176 | 117 | 0.466 | 1.189 |
P57 | 1.597 | 0.343 | 117 | 1.044 | 2.445 |
P58 | 3.197 | 0.682 | 117 | 2.095 | 4.878 |
P59 | 4.412 | 0.927 | 117 | 2.909 | 6.69 |
P60 | 4.743 | 1.027 | 117 | 3.089 | 7.282 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P56 | 0.745 | 0.176 | 117 | 0.466 | 1.189 |
P57 | 1.597 | 0.343 | 117 | 1.044 | 2.445 |
P58 | 3.197 | 0.682 | 117 | 2.095 | 4.878 |
P59 | 4.412 | 0.927 | 117 | 2.909 | 6.69 |
P60 | 4.743 | 1.027 | 117 | 3.089 | 7.282 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 2.145 | 0.565 | 117 | 1.272 | 3.615 | 1 | 2.894 | 0.005 ** |
P58 / P57 | 2.001 | 0.498 | 117 | 1.223 | 3.275 | 1 | 2.791 | 0.006 ** |
P59 / P58 | 1.38 | 0.342 | 117 | 0.845 | 2.254 | 1 | 1.3 | 0.196 |
P60 / P59 | 1.075 | 0.266 | 117 | 0.659 | 1.754 | 1 | 0.293 | 0.770 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P57 / P56 | 2.145 | 0.565 | 117 | 1.272 | 3.615 | 1 | 2.894 | 0.005 ** |
P58 / P57 | 2.001 | 0.498 | 117 | 1.223 | 3.275 | 1 | 2.791 | 0.006 ** |
P59 / P58 | 1.38 | 0.342 | 117 | 0.845 | 2.254 | 1 | 1.3 | 0.196 |
P60 / P59 | 1.075 | 0.266 | 117 | 0.659 | 1.754 | 1 | 0.293 | 0.770 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.618 | 0.176 | 117 | 0.351 | 1.086 |
IH | 0.898 | 0.32 | 117 | 0.444 | 1.818 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.618 | 0.176 | 117 | 0.351 | 1.086 |
IH | 0.898 | 0.32 | 117 | 0.444 | 1.818 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.969 | 0.276 | 117 | 0.552 | 1.704 |
IH | 2.632 | 0.84 | 117 | 1.399 | 4.952 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.969 | 0.276 | 117 | 0.552 | 1.704 |
IH | 2.632 | 0.84 | 117 | 1.399 | 4.952 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.917 | 0.523 | 117 | 1.117 | 3.29 |
IH | 5.332 | 1.729 | 117 | 2.805 | 10.136 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.917 | 0.523 | 117 | 1.117 | 3.29 |
IH | 5.332 | 1.729 | 117 | 2.805 | 10.136 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.694 | 0.737 | 117 | 1.567 | 4.631 |
IH | 7.224 | 2.294 | 117 | 3.852 | 13.549 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.694 | 0.737 | 117 | 1.567 | 4.631 |
IH | 7.224 | 2.294 | 117 | 3.852 | 13.549 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.596 | 0.726 | 117 | 1.492 | 4.516 |
IH | 8.665 | 2.794 | 117 | 4.575 | 16.408 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.596 | 0.726 | 117 | 1.492 | 4.516 |
IH | 8.665 | 2.794 | 117 | 4.575 | 16.408 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.688 | 0.302 | 117 | 0.288 | 1.64 | 1 | −0.853 | 0.396 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.688 | 0.302 | 117 | 0.288 | 1.64 | 1 | −0.853 | 0.396 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.368 | 0.157 | 117 | 0.159 | 0.856 | 1 | −2.347 | 0.021 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.368 | 0.157 | 117 | 0.159 | 0.856 | 1 | −2.347 | 0.021 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.359 | 0.151 | 117 | 0.156 | 0.827 | 1 | −2.431 | 0.017 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.359 | 0.151 | 117 | 0.156 | 0.827 | 1 | −2.431 | 0.017 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.373 | 0.156 | 117 | 0.163 | 0.853 | 1 | −2.361 | 0.020 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.373 | 0.156 | 117 | 0.163 | 0.853 | 1 | −2.361 | 0.020 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.3 | 0.126 | 117 | 0.13 | 0.689 | 1 | −2.868 | 0.005 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.3 | 0.126 | 117 | 0.13 | 0.689 | 1 | −2.868 | 0.005 ** |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Temporal plot: