7 BrDU+ cells
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Layer |
Cerebellar layer |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Dens_BrDU |
Density of BrDU^(+) cells (10^(-5) cells/μm^(3)) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Layer |
Cerebellar layer |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Dens_BrDU |
Density of BrDU^(+) cells (10^(-5) cells/μm^(3)) |
❖ Correlations
7.1 Density of BrDU+ cells
7.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.266 | 2.028 | 4.112 | 0.621 | 3.961 | 0.288 | 6.074 | 0.133 | −1.554 | 15 |
IH | 7.008 | 2.52 | 6.351 | 0.36 | 2.927 | 4.162 | 12.744 | 1.129 | 0.283 | 18 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.266 | 2.028 | 4.112 | 0.621 | 3.961 | 0.288 | 6.074 | 0.133 | −1.554 | 15 |
IH | 7.008 | 2.52 | 6.351 | 0.36 | 2.927 | 4.162 | 12.744 | 1.129 | 0.283 | 18 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 4.178 | 2.201 | 4.843 | 0.527 | 1.787 | 1.807 | 9.038 | 1.501 | 1.716 | 15 |
IH | 4.843 | 2.216 | 4.911 | 0.458 | 1.931 | 2.088 | 11.005 | 1.583 | 2.632 | 18 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 4.178 | 2.201 | 4.843 | 0.527 | 1.787 | 1.807 | 9.038 | 1.501 | 1.716 | 15 |
IH | 4.843 | 2.216 | 4.911 | 0.458 | 1.931 | 2.088 | 11.005 | 1.583 | 2.632 | 18 |
7.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Dens_BrDU ~ Condition * Layer + (1 | Mouse),
data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
305.46 | 306.88 | 318.60 | 0.42 | 0.24 | 0.24 | 1.86 | 0.45 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
305.46 | 306.88 | 318.60 | 0.42 | 0.24 | 0.24 | 1.86 | 0.45 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Dens_BrDU ~ Condition * Layer + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
308.23 | 309.65 | 321.37 | 0.03 | 0.02 | 0.01 | 1.86 | 1.99 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
308.23 | 309.65 | 321.37 | 0.03 | 0.02 | 0.01 | 1.86 | 1.99 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
7.1.3 Effects Analysis
7.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 3.504 | 0.534 | (2.60, 4.72) | 8.220 | < .001 |
Condition2 | 1.588 | 0.325 | (1.06, 2.37) | 2.259 | 0.024 * |
Layer1 | 0.869 | 0.073 | (0.74, 1.03) | -1.664 | 0.096 |
Condition2 * Layer1 | 1.394 | 0.158 | (1.12, 1.74) | 2.930 | 0.003 ** |
Model: Dens_BrDU ~ Condition * Layer (66 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 3.504 | 0.534 | (2.60, 4.72) | 8.220 | < .001 |
Condition2 | 1.588 | 0.325 | (1.06, 2.37) | 2.259 | 0.024 * |
Layer1 | 0.869 | 0.073 | (0.74, 1.03) | -1.664 | 0.096 |
Condition2 * Layer1 | 1.394 | 0.158 | (1.12, 1.74) | 2.930 | 0.003 ** |
Model: Dens_BrDU ~ Condition * Layer (66 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 5.10 | 1 | 0.020 * |
Layer | 2.77 | 1 | 0.100 |
Condition:Layer | 8.59 | 1 | 0.003 ** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 5.10 | 1 | 0.020 * |
Layer | 2.77 | 1 | 0.100 |
Condition:Layer | 8.59 | 1 | 0.003 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 4 | 303.79 | 312.55 | -147.89 | 295.79 | |||
mod_full | 6 | 294.64 | 307.77 | -141.32 | 282.64 | 13.15 | 2 | 0.001 ** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 4 | 303.79 | 312.55 | -147.89 | 295.79 | |||
mod_full | 6 | 294.64 | 307.77 | -141.32 | 282.64 | 13.15 | 2 | 0.001 ** |
7.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.504 | 0.534 | 64 | 2.583 | 4.752 |
IH | 5.563 | 0.763 | 64 | 4.23 | 7.317 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.504 | 0.534 | 64 | 2.583 | 4.752 |
IH | 5.563 | 0.763 | 64 | 4.23 | 7.317 |
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.63 | 0.129 | 64 | 0.418 | 0.948 | 1 | −2.259 | 0.027 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.63 | 0.129 | 64 | 0.418 | 0.948 | 1 | −2.259 | 0.027 * |
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Layer | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
EGL | 4.529 | 0.532 | 64 | 3.581 | 5.728 |
IGL | 4.304 | 0.504 | 64 | 3.405 | 5.439 |
Layer | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
EGL | 4.529 | 0.532 | 64 | 3.581 | 5.728 |
IGL | 4.304 | 0.504 | 64 | 3.405 | 5.439 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
EGL / IGL | 1.052 | 0.119 | 64 | 0.839 | 1.32 | 1 | 0.451 | 0.654 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
EGL / IGL | 1.052 | 0.119 | 64 | 0.839 | 1.32 | 1 | 0.451 | 0.654 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.044 | 0.532 | 64 | 2.146 | 4.317 |
IH | 6.738 | 1.054 | 64 | 4.93 | 9.209 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.044 | 0.532 | 64 | 2.146 | 4.317 |
IH | 6.738 | 1.054 | 64 | 4.93 | 9.209 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 4.032 | 0.701 | 64 | 2.85 | 5.706 |
IH | 4.593 | 0.72 | 64 | 3.358 | 6.282 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 4.032 | 0.701 | 64 | 2.85 | 5.706 |
IH | 4.593 | 0.72 | 64 | 3.358 | 6.282 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.452 | 0.106 | 64 | 0.283 | 0.721 | 1 | −3.393 | 0.001 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.452 | 0.106 | 64 | 0.283 | 0.721 | 1 | −3.393 | 0.001 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.878 | 0.205 | 64 | 0.55 | 1.4 | 1 | −0.557 | 0.580 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.878 | 0.205 | 64 | 0.55 | 1.4 | 1 | −0.557 | 0.580 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.515 | 0.117 | 64 | 0.327 | 0.809 | 1 | −2.93 | 0.005 ** |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.515 | 0.117 | 64 | 0.327 | 0.809 | 1 | −2.93 | 0.005 ** |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: