5 Caspase (IGL + WM)
❖ Data
❖ Description
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_IGL_WM |
Area of IGL and WM (μm²) |
Dens_IGL_WM |
Density of cleaved caspase 3^(+) cells in the IGL and WM areas (Cells/μm²) |
Prop_C_IGL_WM |
Proportion of cleaved caspase 3^(+) marking in the IGL and WM areas |
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_IGL_WM |
Area of IGL and WM (μm²) |
Dens_IGL_WM |
Density of cleaved caspase 3^(+) cells in the IGL and WM areas (Cells/μm²) |
Prop_C_IGL_WM |
Proportion of cleaved caspase 3^(+) marking in the IGL and WM areas |
❖ Correlations
5.1 Area of the IGL and WM
5.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 4.603 | 1.504 | 2.261 | 0.327 | 2.966 | 2.474 | 6.231 | −0.38 | −1.525 | 6 |
IH | 5.189 | 3.375 | 11.39 | 0.65 | 6.518 | 1.502 | 9.201 | 0.213 | −1.827 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 4.603 | 1.504 | 2.261 | 0.327 | 2.966 | 2.474 | 6.231 | −0.38 | −1.525 | 6 |
IH | 5.189 | 3.375 | 11.39 | 0.65 | 6.518 | 1.502 | 9.201 | 0.213 | −1.827 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.332 | 1.24 | 1.538 | 0.372 | 1.82 | 1.005 | 4.836 | −0.709 | 0.591 | 8 |
IH | 2.402 | 1.562 | 2.439 | 0.65 | 2.72 | 0.89 | 4.871 | 1.14 | 1.189 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.332 | 1.24 | 1.538 | 0.372 | 1.82 | 1.005 | 4.836 | −0.709 | 0.591 | 8 |
IH | 2.402 | 1.562 | 2.439 | 0.65 | 2.72 | 0.89 | 4.871 | 1.14 | 1.189 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.807 | 1.382 | 1.91 | 0.765 | 2.331 | 0.159 | 4.573 | 1.012 | −0.026 | 11 |
IH | 1.418 | 1.191 | 1.418 | 0.84 | 2.331 | 0.184 | 3.317 | 0.775 | −0.874 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.807 | 1.382 | 1.91 | 0.765 | 2.331 | 0.159 | 4.573 | 1.012 | −0.026 | 11 |
IH | 1.418 | 1.191 | 1.418 | 0.84 | 2.331 | 0.184 | 3.317 | 0.775 | −0.874 | 8 |
5.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_IGL_WM ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
172.93 | 177.30 | 186.83 | 0.55 | 0.37 | 0.29 | 1.06 | 0.59 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
172.93 | 177.30 | 186.83 | 0.55 | 0.37 | 0.29 | 1.06 | 0.59 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = A_IGL_WM ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
173.40 | 177.76 | 187.30 | 0.23 | 0.13 | 0.11 | 0.94 | 1.12 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
173.40 | 177.76 | 187.30 | 0.23 | 0.13 | 0.11 | 0.94 | 1.12 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
5.1.3 Effects Analysis
5.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.609 | 0.400 | (1.93, 3.52) | 6.246 | < .001 |
Condition1 | 1.135 | 0.174 | (0.84, 1.53) | 0.827 | 0.408 |
Z1 | 1.840 | 0.281 | (1.36, 2.48) | 3.988 | < .001 |
Z2 | 1.048 | 0.149 | (0.79, 1.39) | 0.331 | 0.741 |
Condition1 * Z1 | 0.918 | 0.140 | (0.68, 1.24) | -0.557 | 0.577 |
Condition1 * Z2 | 1.051 | 0.149 | (0.80, 1.39) | 0.350 | 0.726 |
Model: A_IGL_WM ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.609 | 0.400 | (1.93, 3.52) | 6.246 | < .001 |
Condition1 | 1.135 | 0.174 | (0.84, 1.53) | 0.827 | 0.408 |
Z1 | 1.840 | 0.281 | (1.36, 2.48) | 3.988 | < .001 |
Z2 | 1.048 | 0.149 | (0.79, 1.39) | 0.331 | 0.741 |
Condition1 * Z1 | 0.918 | 0.140 | (0.68, 1.24) | -0.557 | 0.577 |
Condition1 * Z2 | 1.051 | 0.149 | (0.80, 1.39) | 0.350 | 0.726 |
Model: A_IGL_WM ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.68 | 1 | 0.410 |
Z | 26.07 | 2 | <0.001 *** |
Condition:Z | 0.31 | 2 | 0.860 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.68 | 1 | 0.410 |
Z | 26.07 | 2 | <0.001 *** |
Condition:Z | 0.31 | 2 | 0.860 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 154.85 | 163.54 | -72.43 | 144.85 | |||
mod_full | 8 | 159.55 | 173.45 | -71.77 | 143.55 | 1.31 | 3 | 0.730 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 154.85 | 163.54 | -72.43 | 144.85 | |||
mod_full | 8 | 159.55 | 173.45 | -71.77 | 143.55 | 1.31 | 3 | 0.730 |
5.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.962 | 0.591 | 40 | 1.979 | 4.432 |
IH | 2.298 | 0.536 | 40 | 1.433 | 3.683 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.962 | 0.591 | 40 | 1.979 | 4.432 |
IH | 2.298 | 0.536 | 40 | 1.433 | 3.683 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.289 | 0.396 | 40 | 0.693 | 2.398 | 1 | 0.827 | 0.413 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.289 | 0.396 | 40 | 0.693 | 2.398 | 1 | 0.827 | 0.413 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 4.799 | 1.102 | 40 | 3.017 | 7.632 |
Med | 2.734 | 0.574 | 40 | 1.79 | 4.178 |
Post | 1.353 | 0.258 | 40 | 0.92 | 1.988 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 4.799 | 1.102 | 40 | 3.017 | 7.632 |
Med | 2.734 | 0.574 | 40 | 1.79 | 4.178 |
Post | 1.353 | 0.258 | 40 | 0.92 | 1.988 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.755 | 0.459 | 40 | 1.034 | 2.979 | 1 | 2.149 | 0.038 * |
Ant / Post | 3.547 | 0.897 | 40 | 2.128 | 5.912 | 1 | 5.009 | <0.001 *** |
Med / Post | 2.021 | 0.472 | 40 | 1.261 | 3.24 | 1 | 3.013 | 0.004 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.755 | 0.459 | 40 | 1.034 | 2.979 | 1 | 2.149 | 0.038 * |
Ant / Post | 3.547 | 0.897 | 40 | 2.128 | 5.912 | 1 | 5.009 | <0.001 *** |
Med / Post | 2.021 | 0.472 | 40 | 1.261 | 3.24 | 1 | 3.013 | 0.004 ** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 5.004 | 1.476 | 40 | 2.756 | 9.084 |
IH | 4.603 | 1.628 | 40 | 2.252 | 9.408 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 5.004 | 1.476 | 40 | 2.756 | 9.084 |
IH | 4.603 | 1.628 | 40 | 2.252 | 9.408 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.263 | 0.862 | 40 | 1.913 | 5.566 |
IH | 2.291 | 0.746 | 40 | 1.186 | 4.426 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.263 | 0.862 | 40 | 1.913 | 5.566 |
IH | 2.291 | 0.746 | 40 | 1.186 | 4.426 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.591 | 0.391 | 40 | 0.969 | 2.614 |
IH | 1.15 | 0.328 | 40 | 0.646 | 2.048 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.591 | 0.391 | 40 | 0.969 | 2.614 |
IH | 1.15 | 0.328 | 40 | 0.646 | 2.048 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.087 | 0.502 | 40 | 0.427 | 2.766 | 1 | 0.181 | 0.857 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.087 | 0.502 | 40 | 0.427 | 2.766 | 1 | 0.181 | 0.857 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.424 | 0.597 | 40 | 0.61 | 3.324 | 1 | 0.843 | 0.404 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.424 | 0.597 | 40 | 0.61 | 3.324 | 1 | 0.843 | 0.404 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.384 | 0.514 | 40 | 0.653 | 2.933 | 1 | 0.873 | 0.388 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.384 | 0.514 | 40 | 0.653 | 2.933 | 1 | 0.873 | 0.388 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.763 | 0.403 | 40 | 0.263 | 2.217 | 1 | −0.512 | 0.612 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.763 | 0.403 | 40 | 0.263 | 2.217 | 1 | −0.512 | 0.612 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.786 | 0.39 | 40 | 0.288 | 2.145 | 1 | −0.485 | 0.630 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.786 | 0.39 | 40 | 0.288 | 2.145 | 1 | −0.485 | 0.630 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.029 | 0.471 | 40 | 0.408 | 2.595 | 1 | 0.063 | 0.950 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.029 | 0.471 | 40 | 0.408 | 2.595 | 1 | 0.063 | 0.950 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
5.2 Density of Cleaved Caspase 3+ cells (IGL and WM)
5.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 227.181 | 172.974 | 29,919.878 | 0.761 | 220.939 | 80.955 | 552.678 | 1.682 | 3.086 | 6 |
IH | 325.825 | 146.93 | 21,588.571 | 0.451 | 272.213 | 131.967 | 488.71 | −0.62 | 1.638 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 227.181 | 172.974 | 29,919.878 | 0.761 | 220.939 | 80.955 | 552.678 | 1.682 | 3.086 | 6 |
IH | 325.825 | 146.93 | 21,588.571 | 0.451 | 272.213 | 131.967 | 488.71 | −0.62 | 1.638 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 390.433 | 318.464 | 101,419.043 | 0.816 | 487.851 | 14.586 | 977.175 | 0.618 | 0.423 | 8 |
IH | 164.156 | 86.513 | 7,484.486 | 0.527 | 154.148 | 32.438 | 254.465 | −0.923 | 0.403 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 390.433 | 318.464 | 101,419.043 | 0.816 | 487.851 | 14.586 | 977.175 | 0.618 | 0.423 | 8 |
IH | 164.156 | 86.513 | 7,484.486 | 0.527 | 154.148 | 32.438 | 254.465 | −0.923 | 0.403 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 340.84 | 274.325 | 75,254.051 | 0.805 | 336.526 | 4.851 | 976.294 | 1.141 | 2.028 | 11 |
IH | 339.921 | 290.704 | 84,509.032 | 0.855 | 463.775 | 38.013 | 890.515 | 1.004 | 0.421 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 340.84 | 274.325 | 75,254.051 | 0.805 | 336.526 | 4.851 | 976.294 | 1.141 | 2.028 | 11 |
IH | 339.921 | 290.704 | 84,509.032 | 0.855 | 463.775 | 38.013 | 890.515 | 1.004 | 0.421 | 8 |
5.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Dens_IGL_WM ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
581.95 | 586.31 | 595.85 | 0.49 | 0.02 | 0.48 | 168.86 | 0.74 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
581.95 | 586.31 | 595.85 | 0.49 | 0.02 | 0.48 | 168.86 | 0.74 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Dens_IGL_WM ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
597.23 | 601.60 | 611.13 | 1.14e-05 | 2.39e-06 | 8.97e-06 | 158.26 | 187.50 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
597.23 | 601.60 | 611.13 | 1.14e-05 | 2.39e-06 | 8.97e-06 | 158.26 | 187.50 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
5.2.3 Effects Analysis
5.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 271.126 | 68.068 | (165.76, 443.48) | 22.316 | < .001 |
Condition1 | 0.977 | 0.245 | (0.60, 1.60) | -0.091 | 0.928 |
Z1 | 1.104 | 0.226 | (0.74, 1.65) | 0.484 | 0.628 |
Z2 | 0.936 | 0.182 | (0.64, 1.37) | -0.337 | 0.736 |
Condition1 * Z1 | 0.823 | 0.167 | (0.55, 1.22) | -0.960 | 0.337 |
Condition1 * Z2 | 1.209 | 0.241 | (0.82, 1.79) | 0.950 | 0.342 |
Model: Dens_IGL_WM ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 271.126 | 68.068 | (165.76, 443.48) | 22.316 | < .001 |
Condition1 | 0.977 | 0.245 | (0.60, 1.60) | -0.091 | 0.928 |
Z1 | 1.104 | 0.226 | (0.74, 1.65) | 0.484 | 0.628 |
Z2 | 0.936 | 0.182 | (0.64, 1.37) | -0.337 | 0.736 |
Condition1 * Z1 | 0.823 | 0.167 | (0.55, 1.22) | -0.960 | 0.337 |
Condition1 * Z2 | 1.209 | 0.241 | (0.82, 1.79) | 0.950 | 0.342 |
Model: Dens_IGL_WM ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 8.25e-03 | 1 | 0.930 |
Z | 0.24 | 2 | 0.890 |
Condition:Z | 1.12 | 2 | 0.570 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 8.25e-03 | 1 | 0.930 |
Z | 0.24 | 2 | 0.890 |
Condition:Z | 1.12 | 2 | 0.570 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 568.18 | 576.87 | -279.09 | 558.18 | |||
mod_full | 8 | 572.79 | 586.69 | -278.39 | 556.79 | 1.40 | 3 | 0.710 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 568.18 | 576.87 | -279.09 | 558.18 | |||
mod_full | 8 | 572.79 | 586.69 | -278.39 | 556.79 | 1.40 | 3 | 0.710 |
5.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 265.012 | 87.914 | 40 | 135.547 | 518.135 |
IH | 277.381 | 104.567 | 40 | 129.475 | 594.248 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 265.012 | 87.914 | 40 | 135.547 | 518.135 |
IH | 277.381 | 104.567 | 40 | 129.475 | 594.248 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.955 | 0.48 | 40 | 0.346 | 2.636 | 1 | −0.091 | 0.928 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.955 | 0.48 | 40 | 0.346 | 2.636 | 1 | −0.091 | 0.928 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 299.416 | 101.619 | 40 | 150.792 | 594.526 |
Med | 253.894 | 82.139 | 40 | 132.035 | 488.22 |
Post | 262.173 | 74.904 | 40 | 147.167 | 467.051 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 299.416 | 101.619 | 40 | 150.792 | 594.526 |
Med | 253.894 | 82.139 | 40 | 132.035 | 488.22 |
Post | 262.173 | 74.904 | 40 | 147.167 | 467.051 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.179 | 0.421 | 40 | 0.573 | 2.426 | 1 | 0.462 | 0.647 |
Ant / Post | 1.142 | 0.381 | 40 | 0.582 | 2.24 | 1 | 0.399 | 0.692 |
Med / Post | 0.968 | 0.304 | 40 | 0.513 | 1.828 | 1 | −0.102 | 0.919 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.179 | 0.421 | 40 | 0.573 | 2.426 | 1 | 0.462 | 0.647 |
Ant / Post | 1.142 | 0.381 | 40 | 0.582 | 2.24 | 1 | 0.399 | 0.692 |
Med / Post | 0.968 | 0.304 | 40 | 0.513 | 1.828 | 1 | −0.102 | 0.919 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 240.908 | 107.738 | 40 | 97.569 | 594.828 |
IH | 372.132 | 187.945 | 40 | 134.089 | 1,032.764 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 240.908 | 107.738 | 40 | 97.569 | 594.828 |
IH | 372.132 | 187.945 | 40 | 134.089 | 1,032.764 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 299.99 | 121.355 | 40 | 132.445 | 679.485 |
IH | 214.88 | 109.804 | 40 | 76.501 | 603.564 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 299.99 | 121.355 | 40 | 132.445 | 679.485 |
IH | 214.88 | 109.804 | 40 | 76.501 | 603.564 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 257.536 | 97.101 | 40 | 120.197 | 551.8 |
IH | 266.893 | 113.757 | 40 | 112.777 | 631.617 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 257.536 | 97.101 | 40 | 120.197 | 551.8 |
IH | 266.893 | 113.757 | 40 | 112.777 | 631.617 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.647 | 0.434 | 40 | 0.167 | 2.509 | 1 | −0.649 | 0.520 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.647 | 0.434 | 40 | 0.167 | 2.509 | 1 | −0.649 | 0.520 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.396 | 0.916 | 40 | 0.37 | 5.261 | 1 | 0.508 | 0.614 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.396 | 0.916 | 40 | 0.37 | 5.261 | 1 | 0.508 | 0.614 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.965 | 0.547 | 40 | 0.307 | 3.033 | 1 | −0.063 | 0.950 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.965 | 0.547 | 40 | 0.307 | 3.033 | 1 | −0.063 | 0.950 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.464 | 0.337 | 40 | 0.107 | 2.012 | 1 | −1.058 | 0.296 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.464 | 0.337 | 40 | 0.107 | 2.012 | 1 | −1.058 | 0.296 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.671 | 0.43 | 40 | 0.184 | 2.451 | 1 | −0.623 | 0.537 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.671 | 0.43 | 40 | 0.184 | 2.451 | 1 | −0.623 | 0.537 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.447 | 0.911 | 40 | 0.405 | 5.164 | 1 | 0.587 | 0.561 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.447 | 0.911 | 40 | 0.405 | 5.164 | 1 | 0.587 | 0.561 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
5.3 Proportion of Cleaved Caspase 3+ marking (IGL and WM)
5.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.012 | 0.009 | 0 | 0.754 | 0.014 | 0.004 | 0.029 | 1.215 | 1.225 | 6 |
IH | 0.019 | 0.008 | 0 | 0.424 | 0.014 | 0.007 | 0.025 | −1.648 | 3.083 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.012 | 0.009 | 0 | 0.754 | 0.014 | 0.004 | 0.029 | 1.215 | 1.225 | 6 |
IH | 0.019 | 0.008 | 0 | 0.424 | 0.014 | 0.007 | 0.025 | −1.648 | 3.083 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.021 | 0.017 | 0 | 0.793 | 0.032 | 0.001 | 0.047 | 0.186 | −1.178 | 8 |
IH | 0.009 | 0.005 | 0 | 0.571 | 0.008 | 0.002 | 0.015 | −0.334 | 0.9 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.021 | 0.017 | 0 | 0.793 | 0.032 | 0.001 | 0.047 | 0.186 | −1.178 | 8 |
IH | 0.009 | 0.005 | 0 | 0.571 | 0.008 | 0.002 | 0.015 | −0.334 | 0.9 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.019 | 0.018 | 0 | 0.948 | 0.018 | 0 | 0.067 | 1.911 | 4.988 | 11 |
IH | 0.019 | 0.018 | 0 | 0.94 | 0.028 | 0.001 | 0.055 | 1.185 | 0.88 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.019 | 0.018 | 0 | 0.948 | 0.018 | 0 | 0.067 | 1.911 | 4.988 | 11 |
IH | 0.019 | 0.018 | 0 | 0.94 | 0.028 | 0.001 | 0.055 | 1.185 | 0.88 | 8 |
5.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_IGL_WM ~ Condition * Z + (1 | Mouse),
data = data, family = beta_family("logit"), REML = TRUE,
ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-247.33 | -242.96 | -233.42 | 0.68 | 0.08 | 0.65 | 9.04e-03 | 167.66 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-247.33 | -242.96 | -233.42 | 0.68 | 0.08 | 0.65 | 9.04e-03 | 167.66 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_IGL_WM ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-221.84 | -217.48 | -207.94 | 1.00 | 0.21 | 1.00 | 9.10e-03 | 0.01 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-221.84 | -217.48 | -207.94 | 1.00 | 0.21 | 1.00 | 9.10e-03 | 0.01 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
5.3.3 Effects Analysis
5.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.016 | 0.004 | (0.01, 0.03) | -16.517 | < .001 |
Condition1 | 0.926 | 0.224 | (0.58, 1.49) | -0.319 | 0.750 |
Z1 | 0.978 | 0.143 | (0.73, 1.30) | -0.155 | 0.877 |
Z2 | 0.959 | 0.139 | (0.72, 1.27) | -0.289 | 0.772 |
Condition1 * Z1 | 0.691 | 0.103 | (0.52, 0.93) | -2.467 | 0.014 * |
Condition1 * Z2 | 1.372 | 0.200 | (1.03, 1.82) | 2.172 | 0.030 * |
Model: Prop_C_IGL_WM ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.016 | 0.004 | (0.01, 0.03) | -16.517 | < .001 |
Condition1 | 0.926 | 0.224 | (0.58, 1.49) | -0.319 | 0.750 |
Z1 | 0.978 | 0.143 | (0.73, 1.30) | -0.155 | 0.877 |
Z2 | 0.959 | 0.139 | (0.72, 1.27) | -0.289 | 0.772 |
Condition1 * Z1 | 0.691 | 0.103 | (0.52, 0.93) | -2.467 | 0.014 * |
Condition1 * Z2 | 1.372 | 0.200 | (1.03, 1.82) | 2.172 | 0.030 * |
Model: Prop_C_IGL_WM ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.750 |
Z | 0.26 | 2 | 0.880 |
Condition:Z | 6.73 | 2 | 0.030 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.750 |
Z | 0.26 | 2 | 0.880 |
Condition:Z | 6.73 | 2 | 0.030 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -259.02 | -250.34 | 134.51 | -269.02 | |||
mod_full | 8 | -259.04 | -245.14 | 137.52 | -275.04 | 6.02 | 3 | 0.110 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -259.02 | -250.34 | 134.51 | -269.02 | |||
mod_full | 8 | -259.04 | -245.14 | 137.52 | -275.04 | 6.02 | 3 | 0.110 |
5.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.015 | 0.005 | 40 | 0.008 | 0.029 |
IH | 0.017 | 0.006 | 40 | 0.008 | 0.036 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.015 | 0.005 | 40 | 0.008 | 0.029 |
IH | 0.017 | 0.006 | 40 | 0.008 | 0.036 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.857 | 0.415 | 40 | 0.322 | 2.281 | 1 | −0.319 | 0.752 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.857 | 0.415 | 40 | 0.322 | 2.281 | 1 | −0.319 | 0.752 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.016 | 0.005 | 40 | 0.009 | 0.029 |
Med | 0.016 | 0.004 | 40 | 0.009 | 0.028 |
Post | 0.017 | 0.004 | 40 | 0.01 | 0.029 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.016 | 0.005 | 40 | 0.009 | 0.029 |
Med | 0.016 | 0.004 | 40 | 0.009 | 0.028 |
Post | 0.017 | 0.004 | 40 | 0.01 | 0.029 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.019 | 0.267 | 40 | 0.6 | 1.732 | 1 | 0.073 | 0.942 |
Ant / Post | 0.916 | 0.214 | 40 | 0.572 | 1.468 | 1 | −0.374 | 0.710 |
Med / Post | 0.899 | 0.206 | 40 | 0.566 | 1.429 | 1 | −0.464 | 0.645 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.019 | 0.267 | 40 | 0.6 | 1.732 | 1 | 0.073 | 0.942 |
Ant / Post | 0.916 | 0.214 | 40 | 0.572 | 1.468 | 1 | −0.374 | 0.710 |
Med / Post | 0.899 | 0.206 | 40 | 0.566 | 1.429 | 1 | −0.464 | 0.645 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.01 | 0.004 | 40 | 0.004 | 0.023 |
IH | 0.025 | 0.01 | 40 | 0.011 | 0.056 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.01 | 0.004 | 40 | 0.004 | 0.023 |
IH | 0.025 | 0.01 | 40 | 0.011 | 0.056 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.02 | 0.007 | 40 | 0.01 | 0.039 |
IH | 0.012 | 0.006 | 40 | 0.005 | 0.031 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.02 | 0.007 | 40 | 0.01 | 0.039 |
IH | 0.012 | 0.006 | 40 | 0.005 | 0.031 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.017 | 0.006 | 40 | 0.008 | 0.033 |
IH | 0.018 | 0.007 | 40 | 0.008 | 0.038 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.017 | 0.006 | 40 | 0.008 | 0.033 |
IH | 0.018 | 0.007 | 40 | 0.008 | 0.038 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.41 | 0.243 | 40 | 0.124 | 1.355 | 1 | −1.508 | 0.140 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.41 | 0.243 | 40 | 0.124 | 1.355 | 1 | −1.508 | 0.140 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.613 | 0.929 | 40 | 0.504 | 5.165 | 1 | 0.83 | 0.411 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.613 | 0.929 | 40 | 0.504 | 5.165 | 1 | 0.83 | 0.411 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.953 | 0.487 | 40 | 0.339 | 2.675 | 1 | −0.095 | 0.925 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.953 | 0.487 | 40 | 0.339 | 2.675 | 1 | −0.095 | 0.925 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.254 | 0.135 | 40 | 0.087 | 0.745 | 1 | −2.575 | 0.014 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.254 | 0.135 | 40 | 0.087 | 0.745 | 1 | −2.575 | 0.014 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.43 | 0.204 | 40 | 0.165 | 1.121 | 1 | −1.781 | 0.083 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.43 | 0.204 | 40 | 0.165 | 1.121 | 1 | −1.781 | 0.083 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.693 | 0.776 | 40 | 0.67 | 4.277 | 1 | 1.148 | 0.258 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.693 | 0.776 | 40 | 0.67 | 4.277 | 1 | 1.148 | 0.258 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot: