Number of Purkinje cell bodies
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.727
1.902
3.618
0.218
3
5
11
−1.015
−0.044
11
IH
8
1.549
2.4
0.194
1
6
12
1.775
4.618
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.727
1.902
3.618
0.218
3
5
11
−1.015
−0.044
11
IH
8
1.549
2.4
0.194
1
6
12
1.775
4.618
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.529
1.231
1.515
0.144
2
6
10
−0.532
−0.617
17
IH
7.895
1.883
3.544
0.238
2
4
13
0.895
2.756
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.529
1.231
1.515
0.144
2
6
10
−0.532
−0.617
17
IH
7.895
1.883
3.544
0.238
2
4
13
0.895
2.756
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.7
1.337
1.789
0.154
1.25
8
12
2.076
4.059
10
IH
8.111
1.453
2.111
0.179
2
7
11
1.329
0.746
9
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.7
1.337
1.789
0.154
1.25
8
12
2.076
4.059
10
IH
8.111
1.453
2.111
0.179
2
7
11
1.329
0.746
9
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = genpois ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
335.41
337.53
354.16
0.06
0.03
0.03
1.51
0.34
-2.12
0.11
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
335.41
337.53
354.16
0.06
0.03
0.03
1.51
0.34
-2.12
0.11
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.840
Pearson's Chi-Squared = 62.978
p-value = 0.838
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = poisson ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
Score_log
Score_spherical
365.75
367.37
382.16
0.01
1.53
1
-2.12
0.11
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
Score_log
Score_spherical
365.75
367.37
382.16
0.01
1.53
1
-2.12
0.11
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.289
Pearson's Chi-Squared = 22.000
p-value = 1
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = nbinom2 ("log" ), REML = TRUE , start = list (beta = c (I (mean (data$ N_CC)),
rep (0 , 5 ))), ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
Score_log
Score_spherical
367.75
369.87
386.50
1
1.53
3.34e+07
-3.03
0.11
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
Score_log
Score_spherical
367.75
369.87
386.50
1
1.53
3.34e+07
-3.03
0.11
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.293
Pearson's Chi-Squared = 22.000
p-value = 1
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
Effects Analysis
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = genpois ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
8.288
0.234
(7.84, 8.76)
74.875
< .001
Condition1
1.035
0.029
(0.98, 1.09)
1.219
0.223
Z1
1.005
0.034
(0.94, 1.07)
0.158
0.874
Z2
0.989
0.030
(0.93, 1.05)
-0.375
0.708
Condition1 * Z1
1.012
0.034
(0.95, 1.08)
0.349
0.727
Condition1 * Z2
0.990
0.030
(0.93, 1.05)
-0.329
0.742
Model: N_CC ~ Condition * Z (77 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
8.288
0.234
(7.84, 8.76)
74.875
< .001
Condition1
1.035
0.029
(0.98, 1.09)
1.219
0.223
Z1
1.005
0.034
(0.94, 1.07)
0.158
0.874
Z2
0.989
0.030
(0.93, 1.05)
-0.375
0.708
Condition1 * Z1
1.012
0.034
(0.95, 1.08)
0.349
0.727
Condition1 * Z2
0.990
0.030
(0.93, 1.05)
-0.329
0.742
Model: N_CC ~ Condition * Z (77 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
1.49
1
0.220
Z
0.14
2
0.930
Condition:Z
0.16
2
0.920
term
statistic
df
p.value
Condition
1.49
1
0.220
Z
0.14
2
0.930
Condition:Z
0.16
2
0.920
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
299.45
311.17
-144.72
289.45
mod_full
8
303.57
322.32
-143.78
287.57
1.88
3
0.600
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
299.45
311.17
-144.72
289.45
mod_full
8
303.57
322.32
-143.78
287.57
1.88
3
0.600
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
8.575
0.334
75
7.934
9.267
IH
8.01
0.324
75
7.39
8.682
Condition
response
SE
df
lower.CL
upper.CL
N
8.575
0.334
75
7.934
9.267
IH
8.01
0.324
75
7.39
8.682
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.071
0.06
75
0.958
1.197
1
1.219
0.227
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.071
0.06
75
0.958
1.197
1
1.219
0.227
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
8.332
0.375
75
7.618
9.113
Med
8.194
0.301
75
7.616
8.817
Post
8.337
0.402
75
7.574
9.177
Z
response
SE
df
lower.CL
upper.CL
Ant
8.332
0.375
75
7.618
9.113
Med
8.194
0.301
75
7.616
8.817
Post
8.337
0.402
75
7.574
9.177
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.017
0.054
75
0.914
1.131
1
0.311
0.756
Ant / Post
0.999
0.062
75
0.883
1.131
1
−0.01
0.992
Med / Post
0.983
0.055
75
0.879
1.1
1
−0.306
0.760
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.017
0.054
75
0.914
1.131
1
0.311
0.756
Ant / Post
0.999
0.062
75
0.883
1.131
1
−0.01
0.992
Med / Post
0.983
0.055
75
0.879
1.1
1
−0.306
0.760
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
8.723
0.542
75
7.708
9.873
IH
7.958
0.516
75
6.994
9.056
Condition
response
SE
df
lower.CL
upper.CL
N
8.723
0.542
75
7.708
9.873
IH
7.958
0.516
75
6.994
9.056
Condition
response
SE
df
lower.CL
upper.CL
N
8.394
0.444
75
7.556
9.326
IH
7.999
0.406
75
7.229
8.851
Condition
response
SE
df
lower.CL
upper.CL
N
8.394
0.444
75
7.556
9.326
IH
7.999
0.406
75
7.229
8.851
Condition
response
SE
df
lower.CL
upper.CL
N
8.61
0.563
75
7.559
9.807
IH
8.073
0.57
75
7.014
9.292
Condition
response
SE
df
lower.CL
upper.CL
N
8.61
0.563
75
7.559
9.807
IH
8.073
0.57
75
7.014
9.292
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.096
0.098
75
0.917
1.311
1
1.023
0.310
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.096
0.098
75
0.917
1.311
1
1.023
0.310
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.049
0.077
75
0.907
1.214
1
0.66
0.511
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.049
0.077
75
0.907
1.214
1
0.66
0.511
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.067
0.102
75
0.881
1.292
1
0.67
0.505
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.067
0.102
75
0.881
1.292
1
0.67
0.505
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.045
0.112
75
0.844
1.293
1
0.406
0.686
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.045
0.112
75
0.844
1.293
1
0.406
0.686
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.028
0.128
75
0.802
1.318
1
0.22
0.827
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.028
0.128
75
0.802
1.318
1
0.22
0.827
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.984
0.111
75
0.786
1.232
1
−0.143
0.886
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.984
0.111
75
0.786
1.232
1
−0.143
0.886
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Area of the ML
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
286.515
35.489
1,259.44
0.124
68.608
226.714
328.704
−0.721
−0.947
11
IH
252.165
56.721
3,217.25
0.225
82.33
167.117
346.522
−0.207
−0.679
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
286.515
35.489
1,259.44
0.124
68.608
226.714
328.704
−0.721
−0.947
11
IH
252.165
56.721
3,217.25
0.225
82.33
167.117
346.522
−0.207
−0.679
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
285.829
34.54
1,193.022
0.121
46.08
196.198
333.824
−0.89
1.427
17
IH
263.976
40.209
1,616.748
0.152
68.608
212.378
335.053
0.512
−1.101
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
285.829
34.54
1,193.022
0.121
46.08
196.198
333.824
−0.89
1.427
17
IH
263.976
40.209
1,616.748
0.152
68.608
212.378
335.053
0.512
−1.101
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
283.894
35.514
1,261.235
0.125
34.867
196.813
317.235
−1.831
3.962
10
IH
280.986
24.764
613.249
0.088
31.949
235.725
319.078
−0.178
0.554
9
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
283.894
35.514
1,261.235
0.125
34.867
196.813
317.235
−1.831
3.962
10
IH
280.986
24.764
613.249
0.088
31.949
235.725
319.078
−0.178
0.554
9
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
835.21
837.33
853.96
0.09
37.66
0.15
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
835.21
837.33
853.96
0.09
37.66
0.15
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
829.55
831.67
848.30
1.48e-06
37.66
39.22
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
829.55
831.67
848.30
1.48e-06
37.66
39.22
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
275.248
4.878
(265.85, 284.98)
316.955
< .001
Condition1
1.037
0.018
(1.00, 1.07)
2.046
0.041 *
Z1
0.977
0.025
(0.93, 1.03)
-0.928
0.353
Z2
0.998
0.023
(0.95, 1.04)
-0.090
0.929
Condition1 * Z1
1.028
0.026
(0.98, 1.08)
1.079
0.280
Condition1 * Z2
1.004
0.023
(0.96, 1.05)
0.154
0.878
Model: A_ML ~ Condition * Z (77 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
275.248
4.878
(265.85, 284.98)
316.955
< .001
Condition1
1.037
0.018
(1.00, 1.07)
2.046
0.041 *
Z1
0.977
0.025
(0.93, 1.03)
-0.928
0.353
Z2
0.998
0.023
(0.95, 1.04)
-0.090
0.929
Condition1 * Z1
1.028
0.026
(0.98, 1.08)
1.079
0.280
Condition1 * Z2
1.004
0.023
(0.96, 1.05)
0.154
0.878
Model: A_ML ~ Condition * Z (77 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
4.18
1
0.040 *
Z
1.11
2
0.570
Condition:Z
1.57
2
0.460
term
statistic
df
p.value
Condition
4.18
1
0.040 *
Z
1.11
2
0.570
Condition:Z
1.57
2
0.460
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
800.10
811.82
-395.05
790.10
mod_full
8
799.58
818.33
-391.79
783.58
6.51
3
0.090
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
800.10
811.82
-395.05
790.10
mod_full
8
799.58
818.33
-391.79
783.58
6.51
3
0.090
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
285.41
7.119
75
271.575
299.95
IH
265.447
6.686
75
252.457
279.106
Condition
response
SE
df
lower.CL
upper.CL
N
285.41
7.119
75
271.575
299.95
IH
265.447
6.686
75
252.457
279.106
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.075
0.038
75
1.002
1.154
1
2.046
0.044 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.075
0.038
75
1.002
1.154
1
2.046
0.044 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
268.792
8.581
75
252.23
286.441
Med
274.685
6.866
75
261.343
288.709
Post
282.436
9.716
75
263.73
302.469
Z
response
SE
df
lower.CL
upper.CL
Ant
268.792
8.581
75
252.23
286.441
Med
274.685
6.866
75
261.343
288.709
Post
282.436
9.716
75
263.73
302.469
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
0.979
0.04
75
0.903
1.061
1
−0.535
0.594
Ant / Post
0.952
0.045
75
0.867
1.045
1
−1.055
0.295
Med / Post
0.973
0.041
75
0.894
1.059
1
−0.654
0.515
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
0.979
0.04
75
0.903
1.061
1
−0.535
0.594
Ant / Post
0.952
0.045
75
0.867
1.045
1
−1.055
0.295
Med / Post
0.973
0.041
75
0.894
1.059
1
−0.654
0.515
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
286.515
12.935
75
261.871
313.478
IH
252.165
11.385
75
230.475
275.895
Condition
response
SE
df
lower.CL
upper.CL
N
286.515
12.935
75
261.871
313.478
IH
252.165
11.385
75
230.475
275.895
Condition
response
SE
df
lower.CL
upper.CL
N
285.829
10.38
75
265.88
307.274
IH
263.976
9.068
75
246.516
282.674
Condition
response
SE
df
lower.CL
upper.CL
N
285.829
10.38
75
265.88
307.274
IH
263.976
9.068
75
246.516
282.674
Condition
response
SE
df
lower.CL
upper.CL
N
283.894
13.443
75
258.339
311.977
IH
280.986
14.025
75
254.391
310.36
Condition
response
SE
df
lower.CL
upper.CL
N
283.894
13.443
75
258.339
311.977
IH
280.986
14.025
75
254.391
310.36
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.136
0.073
75
1.001
1.29
1
2
0.049 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.136
0.073
75
1.001
1.29
1
2
0.049 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.083
0.054
75
0.98
1.196
1
1.591
0.116
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.083
0.054
75
0.98
1.196
1
1.591
0.116
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.01
0.07
75
0.881
1.159
1
0.15
0.881
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.01
0.07
75
0.881
1.159
1
0.15
0.881
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.049
0.085
75
0.893
1.233
1
0.594
0.554
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.049
0.085
75
0.893
1.233
1
0.594
0.554
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.125
0.106
75
0.933
1.356
1
1.251
0.215
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.125
0.106
75
0.933
1.356
1
1.251
0.215
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.072
0.091
75
0.905
1.27
1
0.814
0.418
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.072
0.091
75
0.905
1.27
1
0.814
0.418
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Purkinje dendrite Area per Purkinje cell body
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.547
0.15
0.023
0.275
0.094
0.306
0.908
1.36
4.445
10
IH
0.551
0.152
0.023
0.276
0.281
0.299
0.752
−0.61
−0.757
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.547
0.15
0.023
0.275
0.094
0.306
0.908
1.36
4.445
10
IH
0.551
0.152
0.023
0.276
0.281
0.299
0.752
−0.61
−0.757
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.565
0.134
0.018
0.237
0.183
0.328
0.861
0.27
0.336
17
IH
0.556
0.167
0.028
0.3
0.23
0.3
0.901
0.321
−0.365
18
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.565
0.134
0.018
0.237
0.183
0.328
0.861
0.27
0.336
17
IH
0.556
0.167
0.028
0.3
0.23
0.3
0.901
0.321
−0.365
18
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.448
0.084
0.007
0.187
0.124
0.302
0.56
−0.35
−0.746
10
IH
0.529
0.176
0.031
0.333
0.289
0.255
0.809
−0.025
−0.541
9
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.448
0.084
0.007
0.187
0.124
0.302
0.56
−0.35
−0.746
10
IH
0.529
0.176
0.031
0.333
0.289
0.255
0.809
−0.025
−0.541
9
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
-38.10
-35.92
-19.56
0.07
0.14
0.28
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
-38.10
-35.92
-19.56
0.07
0.14
0.28
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
-36.24
-34.06
-17.70
0.20
0.14
0.15
AIC
AICc
BIC
R2_conditional
R2_marginal
RMSE
Sigma
-36.24
-34.06
-17.70
0.20
0.14
0.15
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.531
0.018
(0.50, 0.57)
-19.010
< .001
Condition1
0.974
0.032
(0.91, 1.04)
-0.798
0.425
Z1
1.033
0.050
(0.94, 1.14)
0.677
0.498
Z2
1.056
0.045
(0.97, 1.15)
1.263
0.207
Condition1 * Z1
1.023
0.049
(0.93, 1.12)
0.468
0.639
Condition1 * Z2
1.035
0.044
(0.95, 1.13)
0.802
0.423
Model: A_PC_per_cell ~ Condition * Z (75 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.531
0.018
(0.50, 0.57)
-19.010
< .001
Condition1
0.974
0.032
(0.91, 1.04)
-0.798
0.425
Z1
1.033
0.050
(0.94, 1.14)
0.677
0.498
Z2
1.056
0.045
(0.97, 1.15)
1.263
0.207
Condition1 * Z1
1.023
0.049
(0.93, 1.12)
0.468
0.639
Condition1 * Z2
1.035
0.044
(0.95, 1.13)
0.802
0.423
Model: A_PC_per_cell ~ Condition * Z (75 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
0.64
1
0.420
Z
3.33
2
0.190
Condition:Z
1.41
2
0.490
term
statistic
df
p.value
Condition
0.64
1
0.420
Z
3.33
2
0.190
Condition:Z
1.41
2
0.490
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-70.29
-58.70
40.14
-80.29
mod_full
8
-66.17
-47.63
41.08
-82.17
1.88
3
0.600
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-70.29
-58.70
40.14
-80.29
mod_full
8
-66.17
-47.63
41.08
-82.17
1.88
3
0.600
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.517
0.024
73
0.471
0.568
IH
0.545
0.026
73
0.497
0.599
Condition
response
SE
df
lower.CL
upper.CL
N
0.517
0.024
73
0.471
0.568
IH
0.545
0.026
73
0.497
0.599
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.948
0.063
73
0.83
1.083
1
−0.798
0.427
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.948
0.063
73
0.83
1.083
1
−0.798
0.427
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
0.549
0.033
73
0.486
0.619
Med
0.561
0.026
73
0.511
0.616
Post
0.487
0.031
73
0.429
0.553
Z
response
SE
df
lower.CL
upper.CL
Ant
0.549
0.033
73
0.486
0.619
Med
0.561
0.026
73
0.511
0.616
Post
0.487
0.031
73
0.429
0.553
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
0.979
0.075
73
0.84
1.141
1
−0.28
0.780
Ant / Post
1.127
0.099
73
0.946
1.344
1
1.359
0.178
Med / Post
1.152
0.091
73
0.983
1.349
1
1.781
0.079
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
0.979
0.075
73
0.84
1.141
1
−0.28
0.780
Ant / Post
1.127
0.099
73
0.946
1.344
1
1.359
0.178
Med / Post
1.152
0.091
73
0.983
1.349
1
1.781
0.079
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.547
0.048
73
0.459
0.651
IH
0.551
0.046
73
0.466
0.651
Condition
response
SE
df
lower.CL
upper.CL
N
0.547
0.048
73
0.459
0.651
IH
0.551
0.046
73
0.466
0.651
Condition
response
SE
df
lower.CL
upper.CL
N
0.565
0.038
73
0.494
0.646
IH
0.556
0.036
73
0.488
0.634
Condition
response
SE
df
lower.CL
upper.CL
N
0.565
0.038
73
0.494
0.646
IH
0.556
0.036
73
0.488
0.634
Condition
response
SE
df
lower.CL
upper.CL
N
0.448
0.039
73
0.376
0.534
IH
0.529
0.049
73
0.44
0.637
Condition
response
SE
df
lower.CL
upper.CL
N
0.448
0.039
73
0.376
0.534
IH
0.529
0.049
73
0.44
0.637
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.992
0.12
73
0.779
1.264
1
−0.065
0.949
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.992
0.12
73
0.779
1.264
1
−0.065
0.949
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.016
0.095
73
0.842
1.225
1
0.167
0.867
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.016
0.095
73
0.842
1.225
1
0.167
0.867
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.846
0.108
73
0.656
1.091
1
−1.31
0.194
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.846
0.108
73
0.656
1.091
1
−1.31
0.194
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.977
0.15
73
0.719
1.326
1
−0.154
0.878
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.977
0.15
73
0.719
1.326
1
−0.154
0.878
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.173
0.207
73
0.826
1.666
1
0.905
0.368
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.173
0.207
73
0.826
1.666
1
0.905
0.368
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.201
0.19
73
0.876
1.647
1
1.155
0.252
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.201
0.19
73
0.876
1.647
1
1.155
0.252
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Purkinje dendrite Volume per Purkinje cell body
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.333
0.119
0.014
0.358
0.121
0.181
0.624
1.662
4.012
10
IH
0.374
0.12
0.014
0.321
0.17
0.179
0.546
−0.318
−0.805
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.333
0.119
0.014
0.358
0.121
0.181
0.624
1.662
4.012
10
IH
0.374
0.12
0.014
0.321
0.17
0.179
0.546
−0.318
−0.805
11
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.317
0.075
0.006
0.236
0.123
0.197
0.47
0.249
−0.486
17
IH
0.349
0.13
0.017
0.374
0.169
0.139
0.579
0.232
−0.603
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.317
0.075
0.006
0.236
0.123
0.197
0.47
0.249
−0.486
17
IH
0.349
0.13
0.017
0.374
0.169
0.139
0.579
0.232
−0.603
19
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.245
0.043
0.002
0.177
0.061
0.159
0.305
−0.833
0.399
10
IH
0.343
0.14
0.02
0.408
0.216
0.126
0.578
0.021
−0.151
9
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.245
0.043
0.002
0.177
0.061
0.159
0.305
−0.833
0.399
10
IH
0.343
0.14
0.02
0.408
0.216
0.126
0.578
0.021
−0.151
9
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-91.58
-89.43
-72.93
0.13
0.12
4.58e-03
0.10
0.33
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-91.58
-89.43
-72.93
0.13
0.12
4.58e-03
0.10
0.33
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-85.14
-82.99
-66.49
0.61
0.53
0.19
0.10
0.11
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-85.14
-82.99
-66.49
0.61
0.53
0.19
0.10
0.11
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.324
0.013
(0.30, 0.35)
-27.636
< .001
Condition1
0.912
0.037
(0.84, 0.99)
-2.249
0.025 *
Z1
1.090
0.063
(0.97, 1.22)
1.492
0.136
Z2
1.026
0.052
(0.93, 1.13)
0.512
0.609
Condition1 * Z1
1.035
0.060
(0.92, 1.16)
0.594
0.552
Condition1 * Z2
1.044
0.053
(0.94, 1.15)
0.847
0.397
Model: Vol_PC_per_cell ~ Condition * Z (76 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.324
0.013
(0.30, 0.35)
-27.636
< .001
Condition1
0.912
0.037
(0.84, 0.99)
-2.249
0.025 *
Z1
1.090
0.063
(0.97, 1.22)
1.492
0.136
Z2
1.026
0.052
(0.93, 1.13)
0.512
0.609
Condition1 * Z1
1.035
0.060
(0.92, 1.16)
0.594
0.552
Condition1 * Z2
1.044
0.053
(0.94, 1.15)
0.847
0.397
Model: Vol_PC_per_cell ~ Condition * Z (76 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
5.06
1
0.020 *
Z
3.75
2
0.150
Condition:Z
1.78
2
0.410
term
statistic
df
p.value
Condition
5.06
1
0.020 *
Z
3.75
2
0.150
Condition:Z
1.78
2
0.410
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-117.44
-105.79
63.72
-127.44
mod_full
8
-117.56
-98.92
66.78
-133.56
6.12
3
0.110
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-117.44
-105.79
63.72
-127.44
mod_full
8
-117.56
-98.92
66.78
-133.56
6.12
3
0.110
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.296
0.017
74
0.264
0.332
IH
0.355
0.02
74
0.317
0.398
Condition
response
SE
df
lower.CL
upper.CL
N
0.296
0.017
74
0.264
0.332
IH
0.355
0.02
74
0.317
0.398
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.832
0.068
74
0.708
0.979
1
−2.249
0.027 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.832
0.068
74
0.708
0.979
1
−2.249
0.027 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
0.353
0.026
74
0.305
0.408
Med
0.333
0.019
74
0.297
0.372
Post
0.29
0.022
74
0.249
0.337
Z
response
SE
df
lower.CL
upper.CL
Ant
0.353
0.026
74
0.305
0.408
Med
0.333
0.019
74
0.297
0.372
Post
0.29
0.022
74
0.249
0.337
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.062
0.097
74
0.885
1.273
1
0.654
0.515
Ant / Post
1.219
0.128
74
0.989
1.503
1
1.884
0.063
Med / Post
1.148
0.108
74
0.951
1.386
1
1.463
0.148
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.062
0.097
74
0.885
1.273
1
0.654
0.515
Ant / Post
1.219
0.128
74
0.989
1.503
1
1.884
0.063
Med / Post
1.148
0.108
74
0.951
1.386
1
1.463
0.148
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.333
0.035
74
0.27
0.411
IH
0.374
0.038
74
0.306
0.457
Condition
response
SE
df
lower.CL
upper.CL
N
0.333
0.035
74
0.27
0.411
IH
0.374
0.038
74
0.306
0.457
Condition
response
SE
df
lower.CL
upper.CL
N
0.317
0.026
74
0.269
0.373
IH
0.349
0.028
74
0.298
0.409
Condition
response
SE
df
lower.CL
upper.CL
N
0.317
0.026
74
0.269
0.373
IH
0.349
0.028
74
0.298
0.409
Condition
response
SE
df
lower.CL
upper.CL
N
0.245
0.026
74
0.198
0.302
IH
0.343
0.038
74
0.275
0.428
Condition
response
SE
df
lower.CL
upper.CL
N
0.245
0.026
74
0.198
0.302
IH
0.343
0.038
74
0.275
0.428
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.891
0.13
74
0.666
1.192
1
−0.787
0.434
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.891
0.13
74
0.666
1.192
1
−0.787
0.434
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.908
0.103
74
0.724
1.138
1
−0.853
0.396
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.908
0.103
74
0.724
1.138
1
−0.853
0.396
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.713
0.109
74
0.525
0.968
1
−2.207
0.030 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.713
0.109
74
0.525
0.968
1
−2.207
0.030 *
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.982
0.179
74
0.682
1.413
1
−0.099
0.921
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.982
0.179
74
0.682
1.413
1
−0.099
0.921
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.25
0.263
74
0.823
1.9
1
1.063
0.291
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.25
0.263
74
0.823
1.9
1
1.063
0.291
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.273
0.241
74
0.874
1.856
1
1.278
0.205
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.273
0.241
74
0.874
1.856
1
1.278
0.205
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: