11  Calbindin [P21]

Data

Description

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

N_CC

Number of Purkinje cell bodies (per 413x10^(3) µm^(3))

A_ML

Area of the ML (10^(-4) µm^(2))

A_PC_per_cell

Purkinje dendrite area (10^(-4) µm^(2)) per Purkinje cell body

Vol_PC_per_cell

Purkinje dendrite volume (10^(-4) µm^(3)) per Purkinje cell body

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

N_CC

Number of Purkinje cell bodies (per 413x10^(3) µm^(3))

A_ML

Area of the ML (10^(-4) µm^(2))

A_PC_per_cell

Purkinje dendrite area (10^(-4) µm^(2)) per Purkinje cell body

Vol_PC_per_cell

Purkinje dendrite volume (10^(-4) µm^(3)) per Purkinje cell body

Correlations

11.1 Number of Purkinje cell bodies

11.1.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.727 1.902 3.618 0.218 3 5 11 −1.015 −0.044 11
IH 8 1.549 2.4 0.194 1 6 12 1.775 4.618 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.727 1.902 3.618 0.218 3 5 11 −1.015 −0.044 11
IH 8 1.549 2.4 0.194 1 6 12 1.775 4.618 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.529 1.231 1.515 0.144 2 6 10 −0.532 −0.617 17
IH 7.895 1.883 3.544 0.238 2 4 13 0.895 2.756 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.529 1.231 1.515 0.144 2 6 10 −0.532 −0.617 17
IH 7.895 1.883 3.544 0.238 2 4 13 0.895 2.756 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.7 1.337 1.789 0.154 1.25 8 12 2.076 4.059 10
IH 8.111 1.453 2.111 0.179 2 7 11 1.329 0.746 9
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.7 1.337 1.789 0.154 1.25 8 12 2.076 4.059 10
IH 8.111 1.453 2.111 0.179 2 7 11 1.329 0.746 9

11.1.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = genpois("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
335.41 337.53 354.16 0.06 0.03 0.03 1.51 0.34 -2.12 0.11
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
335.41 337.53 354.16 0.06 0.03 0.03 1.51 0.34 -2.12 0.11

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =  0.840
  Pearson's Chi-Squared = 62.978
                p-value =  0.838

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = poisson("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma Score_log Score_spherical
365.75 367.37 382.16 0.01 1.53 1 -2.12 0.11
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma Score_log Score_spherical
365.75 367.37 382.16 0.01 1.53 1 -2.12 0.11

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =  0.289
  Pearson's Chi-Squared = 22.000
                p-value =      1

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

No potential outliers detected by the model.

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = nbinom2("log"), REML = TRUE, start = list(beta = c(I(mean(data$N_CC)), 
        rep(0, 5))), ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma Score_log Score_spherical
367.75 369.87 386.50 1 1.53 3.34e+07 -3.03 0.11
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma Score_log Score_spherical
367.75 369.87 386.50 1 1.53 3.34e+07 -3.03 0.11

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =  0.293
  Pearson's Chi-Squared = 22.000
                p-value =      1

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

No potential outliers detected by the model.

11.1.3 Effects Analysis

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = genpois("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

11.1.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 8.288 0.234 (7.84, 8.76) 74.875 < .001
Condition1 1.035 0.029 (0.98, 1.09) 1.219 0.223
Z1 1.005 0.034 (0.94, 1.07) 0.158 0.874
Z2 0.989 0.030 (0.93, 1.05) -0.375 0.708
Condition1 * Z1 1.012 0.034 (0.95, 1.08) 0.349 0.727
Condition1 * Z2 0.990 0.030 (0.93, 1.05) -0.329 0.742
Model: N_CC ~ Condition * Z (77 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 8.288 0.234 (7.84, 8.76) 74.875 < .001
Condition1 1.035 0.029 (0.98, 1.09) 1.219 0.223
Z1 1.005 0.034 (0.94, 1.07) 0.158 0.874
Z2 0.989 0.030 (0.93, 1.05) -0.375 0.708
Condition1 * Z1 1.012 0.034 (0.95, 1.08) 0.349 0.727
Condition1 * Z2 0.990 0.030 (0.93, 1.05) -0.329 0.742
Model: N_CC ~ Condition * Z (77 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 1.49 1 0.220
Z 0.14 2 0.930
Condition:Z 0.16 2 0.920
term statistic df p.value
Condition 1.49 1 0.220
Z 0.14 2 0.930
Condition:Z 0.16 2 0.920

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 299.45 311.17 -144.72 289.45
mod_full 8 303.57 322.32 -143.78 287.57 1.88 3 0.600
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 299.45 311.17 -144.72 289.45
mod_full 8 303.57 322.32 -143.78 287.57 1.88 3 0.600
Important

Our LRT() method removes the predictor plus all its interactions

11.1.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 8.575 0.334 75 7.934 9.267
IH 8.01 0.324 75 7.39 8.682
Condition response SE df lower.CL upper.CL
N 8.575 0.334 75 7.934 9.267
IH 8.01 0.324 75 7.39 8.682
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.071 0.06 75 0.958 1.197 1 1.219 0.227
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.071 0.06 75 0.958 1.197 1 1.219 0.227
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 8.332 0.375 75 7.618 9.113
Med 8.194 0.301 75 7.616 8.817
Post 8.337 0.402 75 7.574 9.177
Z response SE df lower.CL upper.CL
Ant 8.332 0.375 75 7.618 9.113
Med 8.194 0.301 75 7.616 8.817
Post 8.337 0.402 75 7.574 9.177
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.017 0.054 75 0.914 1.131 1 0.311 0.756
Ant / Post 0.999 0.062 75 0.883 1.131 1 −0.01 0.992
Med / Post 0.983 0.055 75 0.879 1.1 1 −0.306 0.760
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.017 0.054 75 0.914 1.131 1 0.311 0.756
Ant / Post 0.999 0.062 75 0.883 1.131 1 −0.01 0.992
Med / Post 0.983 0.055 75 0.879 1.1 1 −0.306 0.760
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 8.723 0.542 75 7.708 9.873
IH 7.958 0.516 75 6.994 9.056
Condition response SE df lower.CL upper.CL
N 8.723 0.542 75 7.708 9.873
IH 7.958 0.516 75 6.994 9.056
Condition response SE df lower.CL upper.CL
N 8.394 0.444 75 7.556 9.326
IH 7.999 0.406 75 7.229 8.851
Condition response SE df lower.CL upper.CL
N 8.394 0.444 75 7.556 9.326
IH 7.999 0.406 75 7.229 8.851
Condition response SE df lower.CL upper.CL
N 8.61 0.563 75 7.559 9.807
IH 8.073 0.57 75 7.014 9.292
Condition response SE df lower.CL upper.CL
N 8.61 0.563 75 7.559 9.807
IH 8.073 0.57 75 7.014 9.292
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.096 0.098 75 0.917 1.311 1 1.023 0.310
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.096 0.098 75 0.917 1.311 1 1.023 0.310
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.049 0.077 75 0.907 1.214 1 0.66 0.511
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.049 0.077 75 0.907 1.214 1 0.66 0.511
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.067 0.102 75 0.881 1.292 1 0.67 0.505
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.067 0.102 75 0.881 1.292 1 0.67 0.505
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.045 0.112 75 0.844 1.293 1 0.406 0.686
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.045 0.112 75 0.844 1.293 1 0.406 0.686
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.028 0.128 75 0.802 1.318 1 0.22 0.827
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.028 0.128 75 0.802 1.318 1 0.22 0.827
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.984 0.111 75 0.786 1.232 1 −0.143 0.886
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.984 0.111 75 0.786 1.232 1 −0.143 0.886
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


11.2 Area of the ML

11.2.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 286.515 35.489 1,259.44 0.124 68.608 226.714 328.704 −0.721 −0.947 11
IH 252.165 56.721 3,217.25 0.225 82.33 167.117 346.522 −0.207 −0.679 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 286.515 35.489 1,259.44 0.124 68.608 226.714 328.704 −0.721 −0.947 11
IH 252.165 56.721 3,217.25 0.225 82.33 167.117 346.522 −0.207 −0.679 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 285.829 34.54 1,193.022 0.121 46.08 196.198 333.824 −0.89 1.427 17
IH 263.976 40.209 1,616.748 0.152 68.608 212.378 335.053 0.512 −1.101 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 285.829 34.54 1,193.022 0.121 46.08 196.198 333.824 −0.89 1.427 17
IH 263.976 40.209 1,616.748 0.152 68.608 212.378 335.053 0.512 −1.101 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 283.894 35.514 1,261.235 0.125 34.867 196.813 317.235 −1.831 3.962 10
IH 280.986 24.764 613.249 0.088 31.949 235.725 319.078 −0.178 0.554 9
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 283.894 35.514 1,261.235 0.125 34.867 196.813 317.235 −1.831 3.962 10
IH 280.986 24.764 613.249 0.088 31.949 235.725 319.078 −0.178 0.554 9

11.2.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
835.21 837.33 853.96 0.09 37.66 0.15
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
835.21 837.33 853.96 0.09 37.66 0.15

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
829.55 831.67 848.30 1.48e-06 37.66 39.22
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
829.55 831.67 848.30 1.48e-06 37.66 39.22

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

11.2.3 Effects Analysis

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

11.2.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 275.248 4.878 (265.85, 284.98) 316.955 < .001
Condition1 1.037 0.018 (1.00, 1.07) 2.046 0.041 *
Z1 0.977 0.025 (0.93, 1.03) -0.928 0.353
Z2 0.998 0.023 (0.95, 1.04) -0.090 0.929
Condition1 * Z1 1.028 0.026 (0.98, 1.08) 1.079 0.280
Condition1 * Z2 1.004 0.023 (0.96, 1.05) 0.154 0.878
Model: A_ML ~ Condition * Z (77 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 275.248 4.878 (265.85, 284.98) 316.955 < .001
Condition1 1.037 0.018 (1.00, 1.07) 2.046 0.041 *
Z1 0.977 0.025 (0.93, 1.03) -0.928 0.353
Z2 0.998 0.023 (0.95, 1.04) -0.090 0.929
Condition1 * Z1 1.028 0.026 (0.98, 1.08) 1.079 0.280
Condition1 * Z2 1.004 0.023 (0.96, 1.05) 0.154 0.878
Model: A_ML ~ Condition * Z (77 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 4.18 1 0.040 *
Z 1.11 2 0.570
Condition:Z 1.57 2 0.460
term statistic df p.value
Condition 4.18 1 0.040 *
Z 1.11 2 0.570
Condition:Z 1.57 2 0.460

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 800.10 811.82 -395.05 790.10
mod_full 8 799.58 818.33 -391.79 783.58 6.51 3 0.090
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 800.10 811.82 -395.05 790.10
mod_full 8 799.58 818.33 -391.79 783.58 6.51 3 0.090
Important

Our LRT() method removes the predictor plus all its interactions

11.2.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 285.41 7.119 75 271.575 299.95
IH 265.447 6.686 75 252.457 279.106
Condition response SE df lower.CL upper.CL
N 285.41 7.119 75 271.575 299.95
IH 265.447 6.686 75 252.457 279.106
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.075 0.038 75 1.002 1.154 1 2.046 0.044 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.075 0.038 75 1.002 1.154 1 2.046 0.044 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 268.792 8.581 75 252.23 286.441
Med 274.685 6.866 75 261.343 288.709
Post 282.436 9.716 75 263.73 302.469
Z response SE df lower.CL upper.CL
Ant 268.792 8.581 75 252.23 286.441
Med 274.685 6.866 75 261.343 288.709
Post 282.436 9.716 75 263.73 302.469
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.979 0.04 75 0.903 1.061 1 −0.535 0.594
Ant / Post 0.952 0.045 75 0.867 1.045 1 −1.055 0.295
Med / Post 0.973 0.041 75 0.894 1.059 1 −0.654 0.515
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.979 0.04 75 0.903 1.061 1 −0.535 0.594
Ant / Post 0.952 0.045 75 0.867 1.045 1 −1.055 0.295
Med / Post 0.973 0.041 75 0.894 1.059 1 −0.654 0.515
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 286.515 12.935 75 261.871 313.478
IH 252.165 11.385 75 230.475 275.895
Condition response SE df lower.CL upper.CL
N 286.515 12.935 75 261.871 313.478
IH 252.165 11.385 75 230.475 275.895
Condition response SE df lower.CL upper.CL
N 285.829 10.38 75 265.88 307.274
IH 263.976 9.068 75 246.516 282.674
Condition response SE df lower.CL upper.CL
N 285.829 10.38 75 265.88 307.274
IH 263.976 9.068 75 246.516 282.674
Condition response SE df lower.CL upper.CL
N 283.894 13.443 75 258.339 311.977
IH 280.986 14.025 75 254.391 310.36
Condition response SE df lower.CL upper.CL
N 283.894 13.443 75 258.339 311.977
IH 280.986 14.025 75 254.391 310.36
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.136 0.073 75 1.001 1.29 1 2 0.049 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.136 0.073 75 1.001 1.29 1 2 0.049 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.083 0.054 75 0.98 1.196 1 1.591 0.116
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.083 0.054 75 0.98 1.196 1 1.591 0.116
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.01 0.07 75 0.881 1.159 1 0.15 0.881
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.01 0.07 75 0.881 1.159 1 0.15 0.881
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.049 0.085 75 0.893 1.233 1 0.594 0.554
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.049 0.085 75 0.893 1.233 1 0.594 0.554
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.125 0.106 75 0.933 1.356 1 1.251 0.215
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.125 0.106 75 0.933 1.356 1 1.251 0.215
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.072 0.091 75 0.905 1.27 1 0.814 0.418
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.072 0.091 75 0.905 1.27 1 0.814 0.418
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


11.3 Purkinje dendrite Area per Purkinje cell body

11.3.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.547 0.15 0.023 0.275 0.094 0.306 0.908 1.36 4.445 10
IH 0.551 0.152 0.023 0.276 0.281 0.299 0.752 −0.61 −0.757 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.547 0.15 0.023 0.275 0.094 0.306 0.908 1.36 4.445 10
IH 0.551 0.152 0.023 0.276 0.281 0.299 0.752 −0.61 −0.757 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.565 0.134 0.018 0.237 0.183 0.328 0.861 0.27 0.336 17
IH 0.556 0.167 0.028 0.3 0.23 0.3 0.901 0.321 −0.365 18
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.565 0.134 0.018 0.237 0.183 0.328 0.861 0.27 0.336 17
IH 0.556 0.167 0.028 0.3 0.23 0.3 0.901 0.321 −0.365 18
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.448 0.084 0.007 0.187 0.124 0.302 0.56 −0.35 −0.746 10
IH 0.529 0.176 0.031 0.333 0.289 0.255 0.809 −0.025 −0.541 9
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.448 0.084 0.007 0.187 0.124 0.302 0.56 −0.35 −0.746 10
IH 0.529 0.176 0.031 0.333 0.289 0.255 0.809 −0.025 −0.541 9

11.3.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
-38.10 -35.92 -19.56 0.07 0.14 0.28
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
-38.10 -35.92 -19.56 0.07 0.14 0.28

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
-36.24 -34.06 -17.70 0.20 0.14 0.15
AIC AICc BIC R2_conditional R2_marginal RMSE Sigma
-36.24 -34.06 -17.70 0.20 0.14 0.15

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

11.3.3 Effects Analysis

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

11.3.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.531 0.018 (0.50, 0.57) -19.010 < .001
Condition1 0.974 0.032 (0.91, 1.04) -0.798 0.425
Z1 1.033 0.050 (0.94, 1.14) 0.677 0.498
Z2 1.056 0.045 (0.97, 1.15) 1.263 0.207
Condition1 * Z1 1.023 0.049 (0.93, 1.12) 0.468 0.639
Condition1 * Z2 1.035 0.044 (0.95, 1.13) 0.802 0.423
Model: A_PC_per_cell ~ Condition * Z (75 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.531 0.018 (0.50, 0.57) -19.010 < .001
Condition1 0.974 0.032 (0.91, 1.04) -0.798 0.425
Z1 1.033 0.050 (0.94, 1.14) 0.677 0.498
Z2 1.056 0.045 (0.97, 1.15) 1.263 0.207
Condition1 * Z1 1.023 0.049 (0.93, 1.12) 0.468 0.639
Condition1 * Z2 1.035 0.044 (0.95, 1.13) 0.802 0.423
Model: A_PC_per_cell ~ Condition * Z (75 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.64 1 0.420
Z 3.33 2 0.190
Condition:Z 1.41 2 0.490
term statistic df p.value
Condition 0.64 1 0.420
Z 3.33 2 0.190
Condition:Z 1.41 2 0.490

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -70.29 -58.70 40.14 -80.29
mod_full 8 -66.17 -47.63 41.08 -82.17 1.88 3 0.600
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -70.29 -58.70 40.14 -80.29
mod_full 8 -66.17 -47.63 41.08 -82.17 1.88 3 0.600
Important

Our LRT() method removes the predictor plus all its interactions

11.3.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 0.517 0.024 73 0.471 0.568
IH 0.545 0.026 73 0.497 0.599
Condition response SE df lower.CL upper.CL
N 0.517 0.024 73 0.471 0.568
IH 0.545 0.026 73 0.497 0.599
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.948 0.063 73 0.83 1.083 1 −0.798 0.427
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.948 0.063 73 0.83 1.083 1 −0.798 0.427
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 0.549 0.033 73 0.486 0.619
Med 0.561 0.026 73 0.511 0.616
Post 0.487 0.031 73 0.429 0.553
Z response SE df lower.CL upper.CL
Ant 0.549 0.033 73 0.486 0.619
Med 0.561 0.026 73 0.511 0.616
Post 0.487 0.031 73 0.429 0.553
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.979 0.075 73 0.84 1.141 1 −0.28 0.780
Ant / Post 1.127 0.099 73 0.946 1.344 1 1.359 0.178
Med / Post 1.152 0.091 73 0.983 1.349 1 1.781 0.079
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.979 0.075 73 0.84 1.141 1 −0.28 0.780
Ant / Post 1.127 0.099 73 0.946 1.344 1 1.359 0.178
Med / Post 1.152 0.091 73 0.983 1.349 1 1.781 0.079
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 0.547 0.048 73 0.459 0.651
IH 0.551 0.046 73 0.466 0.651
Condition response SE df lower.CL upper.CL
N 0.547 0.048 73 0.459 0.651
IH 0.551 0.046 73 0.466 0.651
Condition response SE df lower.CL upper.CL
N 0.565 0.038 73 0.494 0.646
IH 0.556 0.036 73 0.488 0.634
Condition response SE df lower.CL upper.CL
N 0.565 0.038 73 0.494 0.646
IH 0.556 0.036 73 0.488 0.634
Condition response SE df lower.CL upper.CL
N 0.448 0.039 73 0.376 0.534
IH 0.529 0.049 73 0.44 0.637
Condition response SE df lower.CL upper.CL
N 0.448 0.039 73 0.376 0.534
IH 0.529 0.049 73 0.44 0.637
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.992 0.12 73 0.779 1.264 1 −0.065 0.949
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.992 0.12 73 0.779 1.264 1 −0.065 0.949
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.016 0.095 73 0.842 1.225 1 0.167 0.867
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.016 0.095 73 0.842 1.225 1 0.167 0.867
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.846 0.108 73 0.656 1.091 1 −1.31 0.194
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.846 0.108 73 0.656 1.091 1 −1.31 0.194
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.977 0.15 73 0.719 1.326 1 −0.154 0.878
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.977 0.15 73 0.719 1.326 1 −0.154 0.878
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.173 0.207 73 0.826 1.666 1 0.905 0.368
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.173 0.207 73 0.826 1.666 1 0.905 0.368
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.201 0.19 73 0.876 1.647 1 1.155 0.252
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.201 0.19 73 0.876 1.647 1 1.155 0.252
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


11.4 Purkinje dendrite Volume per Purkinje cell body

11.4.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.333 0.119 0.014 0.358 0.121 0.181 0.624 1.662 4.012 10
IH 0.374 0.12 0.014 0.321 0.17 0.179 0.546 −0.318 −0.805 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.333 0.119 0.014 0.358 0.121 0.181 0.624 1.662 4.012 10
IH 0.374 0.12 0.014 0.321 0.17 0.179 0.546 −0.318 −0.805 11
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.317 0.075 0.006 0.236 0.123 0.197 0.47 0.249 −0.486 17
IH 0.349 0.13 0.017 0.374 0.169 0.139 0.579 0.232 −0.603 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.317 0.075 0.006 0.236 0.123 0.197 0.47 0.249 −0.486 17
IH 0.349 0.13 0.017 0.374 0.169 0.139 0.579 0.232 −0.603 19
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.245 0.043 0.002 0.177 0.061 0.159 0.305 −0.833 0.399 10
IH 0.343 0.14 0.02 0.408 0.216 0.126 0.578 0.021 −0.151 9
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.245 0.043 0.002 0.177 0.061 0.159 0.305 −0.833 0.399 10
IH 0.343 0.14 0.02 0.408 0.216 0.126 0.578 0.021 −0.151 9

11.4.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-91.58 -89.43 -72.93 0.13 0.12 4.58e-03 0.10 0.33
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-91.58 -89.43 -72.93 0.13 0.12 4.58e-03 0.10 0.33

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-85.14 -82.99 -66.49 0.61 0.53 0.19 0.10 0.11
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-85.14 -82.99 -66.49 0.61 0.53 0.19 0.10 0.11

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

11.4.3 Effects Analysis

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

11.4.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.324 0.013 (0.30, 0.35) -27.636 < .001
Condition1 0.912 0.037 (0.84, 0.99) -2.249 0.025 *
Z1 1.090 0.063 (0.97, 1.22) 1.492 0.136
Z2 1.026 0.052 (0.93, 1.13) 0.512 0.609
Condition1 * Z1 1.035 0.060 (0.92, 1.16) 0.594 0.552
Condition1 * Z2 1.044 0.053 (0.94, 1.15) 0.847 0.397
Model: Vol_PC_per_cell ~ Condition * Z (76 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.324 0.013 (0.30, 0.35) -27.636 < .001
Condition1 0.912 0.037 (0.84, 0.99) -2.249 0.025 *
Z1 1.090 0.063 (0.97, 1.22) 1.492 0.136
Z2 1.026 0.052 (0.93, 1.13) 0.512 0.609
Condition1 * Z1 1.035 0.060 (0.92, 1.16) 0.594 0.552
Condition1 * Z2 1.044 0.053 (0.94, 1.15) 0.847 0.397
Model: Vol_PC_per_cell ~ Condition * Z (76 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 5.06 1 0.020 *
Z 3.75 2 0.150
Condition:Z 1.78 2 0.410
term statistic df p.value
Condition 5.06 1 0.020 *
Z 3.75 2 0.150
Condition:Z 1.78 2 0.410

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -117.44 -105.79 63.72 -127.44
mod_full 8 -117.56 -98.92 66.78 -133.56 6.12 3 0.110
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -117.44 -105.79 63.72 -127.44
mod_full 8 -117.56 -98.92 66.78 -133.56 6.12 3 0.110
Important

Our LRT() method removes the predictor plus all its interactions

11.4.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 0.296 0.017 74 0.264 0.332
IH 0.355 0.02 74 0.317 0.398
Condition response SE df lower.CL upper.CL
N 0.296 0.017 74 0.264 0.332
IH 0.355 0.02 74 0.317 0.398
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.832 0.068 74 0.708 0.979 1 −2.249 0.027 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.832 0.068 74 0.708 0.979 1 −2.249 0.027 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 0.353 0.026 74 0.305 0.408
Med 0.333 0.019 74 0.297 0.372
Post 0.29 0.022 74 0.249 0.337
Z response SE df lower.CL upper.CL
Ant 0.353 0.026 74 0.305 0.408
Med 0.333 0.019 74 0.297 0.372
Post 0.29 0.022 74 0.249 0.337
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.062 0.097 74 0.885 1.273 1 0.654 0.515
Ant / Post 1.219 0.128 74 0.989 1.503 1 1.884 0.063
Med / Post 1.148 0.108 74 0.951 1.386 1 1.463 0.148
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.062 0.097 74 0.885 1.273 1 0.654 0.515
Ant / Post 1.219 0.128 74 0.989 1.503 1 1.884 0.063
Med / Post 1.148 0.108 74 0.951 1.386 1 1.463 0.148
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 0.333 0.035 74 0.27 0.411
IH 0.374 0.038 74 0.306 0.457
Condition response SE df lower.CL upper.CL
N 0.333 0.035 74 0.27 0.411
IH 0.374 0.038 74 0.306 0.457
Condition response SE df lower.CL upper.CL
N 0.317 0.026 74 0.269 0.373
IH 0.349 0.028 74 0.298 0.409
Condition response SE df lower.CL upper.CL
N 0.317 0.026 74 0.269 0.373
IH 0.349 0.028 74 0.298 0.409
Condition response SE df lower.CL upper.CL
N 0.245 0.026 74 0.198 0.302
IH 0.343 0.038 74 0.275 0.428
Condition response SE df lower.CL upper.CL
N 0.245 0.026 74 0.198 0.302
IH 0.343 0.038 74 0.275 0.428
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.891 0.13 74 0.666 1.192 1 −0.787 0.434
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.891 0.13 74 0.666 1.192 1 −0.787 0.434
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.908 0.103 74 0.724 1.138 1 −0.853 0.396
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.908 0.103 74 0.724 1.138 1 −0.853 0.396
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.713 0.109 74 0.525 0.968 1 −2.207 0.030 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.713 0.109 74 0.525 0.968 1 −2.207 0.030 *
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.982 0.179 74 0.682 1.413 1 −0.099 0.921
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.982 0.179 74 0.682 1.413 1 −0.099 0.921
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.25 0.263 74 0.823 1.9 1 1.063 0.291
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.25 0.263 74 0.823 1.9 1 1.063 0.291
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.273 0.241 74 0.874 1.856 1 1.278 0.205
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.273 0.241 74 0.874 1.856 1 1.278 0.205
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot: