Di-Amidino-2-Phenyl-Indole
❖ Data
❖ Description
Variable
Description
Layer
Mouse
Condition
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)
Nb_Vol
Cell density (10^(-2) cell number/μm^(3))
Avg_Distance
Average distance between cells (μm)
Variable
Description
Layer
Mouse
Condition
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)
Nb_Vol
Cell density (10^(-2) cell number/μm^(3))
Avg_Distance
Average distance between cells (μm)
❖ Correlations
Cell Density (Volume)
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.302
0.738
0.545
0.089
0.951
6.005
9.259
−1.273
2.697
24
IH
8.39
0.919
0.845
0.11
0.902
6.063
9.444
−1.347
1.368
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.302
0.738
0.545
0.089
0.951
6.005
9.259
−1.273
2.697
24
IH
8.39
0.919
0.845
0.11
0.902
6.063
9.444
−1.347
1.368
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
6.671
0.847
0.717
0.127
1.502
5.42
8.316
0.537
−0.908
23
IH
6.638
1.185
1.403
0.178
2.181
4.137
8.173
−0.216
−0.618
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
6.671
0.847
0.717
0.127
1.502
5.42
8.316
0.537
−0.908
23
IH
6.638
1.185
1.403
0.178
2.181
4.137
8.173
−0.216
−0.618
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.19
1.312
1.723
0.16
1.152
4.265
9.711
−1.995
4.391
24
IH
7.788
1.315
1.73
0.169
0.488
4.347
8.673
−2.409
4.757
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.19
1.312
1.723
0.16
1.152
4.265
9.711
−1.995
4.391
24
IH
7.788
1.315
1.73
0.169
0.488
4.347
8.673
−2.409
4.757
17
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
411.50
412.77
433.93
0.51
0.28
0.32
0.85
0.13
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
411.50
412.77
433.93
0.51
0.28
0.32
0.85
0.13
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data,
family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
390.35
391.62
412.78
0.02
0.01
8.36e-03
0.86
0.91
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
390.35
391.62
412.78
0.02
0.01
8.36e-03
0.86
0.91
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
7.570
0.227
(7.14, 8.03)
67.563
< .001
Condition1
1.010
0.030
(0.95, 1.07)
0.348
0.728
Layer1
1.096
0.019
(1.06, 1.13)
5.363
< .001
Layer2
0.871
0.015
(0.84, 0.90)
-8.047
< .001
Condition1 * Layer1
0.987
0.017
(0.95, 1.02)
-0.765
0.444
Condition1 * Layer2
0.998
0.017
(0.96, 1.03)
-0.130
0.897
Model: Nb_Vol ~ Condition * Layer (122 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
7.570
0.227
(7.14, 8.03)
67.563
< .001
Condition1
1.010
0.030
(0.95, 1.07)
0.348
0.728
Layer1
1.096
0.019
(1.06, 1.13)
5.363
< .001
Layer2
0.871
0.015
(0.84, 0.90)
-8.047
< .001
Condition1 * Layer1
0.987
0.017
(0.95, 1.02)
-0.765
0.444
Condition1 * Layer2
0.998
0.017
(0.96, 1.03)
-0.130
0.897
Model: Nb_Vol ~ Condition * Layer (122 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
0.12
1
0.730
Layer
67.09
2
<0.001 ***
Condition:Layer
0.94
2
0.630
term
statistic
df
p.value
Condition
0.12
1
0.730
Layer
67.09
2
<0.001 ***
Condition:Layer
0.94
2
0.630
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
370.11
384.13
-180.05
360.11
mod_full
8
375.00
397.43
-179.50
359.00
1.11
3
0.770
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
370.11
384.13
-180.05
360.11
mod_full
8
375.00
397.43
-179.50
359.00
1.11
3
0.770
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
7.649
0.306
120
7.067
8.279
IH
7.491
0.334
120
6.858
8.183
Condition
response
SE
df
lower.CL
upper.CL
N
7.649
0.306
120
7.067
8.279
IH
7.491
0.334
120
6.858
8.183
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.021
0.061
120
0.907
1.15
1
0.348
0.729
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.021
0.061
120
0.907
1.15
1
0.348
0.729
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Layer
response
SE
df
lower.CL
upper.CL
EGL
8.294
0.286
120
7.748
8.879
ML
6.595
0.228
120
6.159
7.062
IGL
7.93
0.273
120
7.406
8.49
Layer
response
SE
df
lower.CL
upper.CL
EGL
8.294
0.286
120
7.748
8.879
ML
6.595
0.228
120
6.159
7.062
IGL
7.93
0.273
120
7.406
8.49
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
EGL / ML
1.258
0.037
120
1.186
1.334
1
7.741
<0.001 ***
EGL / IGL
1.046
0.031
120
0.987
1.109
1
1.525
0.130
ML / IGL
0.832
0.025
120
0.784
0.882
1
−6.22
<0.001 ***
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
EGL / ML
1.258
0.037
120
1.186
1.334
1
7.741
<0.001 ***
EGL / IGL
1.046
0.031
120
0.987
1.109
1
1.525
0.130
ML / IGL
0.832
0.025
120
0.784
0.882
1
−6.22
<0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
8.273
0.377
120
7.559
9.054
IH
8.316
0.429
120
7.508
9.211
Condition
response
SE
df
lower.CL
upper.CL
N
8.273
0.377
120
7.559
9.054
IH
8.316
0.429
120
7.508
9.211
Condition
response
SE
df
lower.CL
upper.CL
N
6.649
0.305
120
6.072
7.281
IH
6.541
0.338
120
5.905
7.245
Condition
response
SE
df
lower.CL
upper.CL
N
6.649
0.305
120
6.072
7.281
IH
6.541
0.338
120
5.905
7.245
Condition
response
SE
df
lower.CL
upper.CL
N
8.136
0.371
120
7.434
8.904
IH
7.729
0.4
120
6.976
8.563
Condition
response
SE
df
lower.CL
upper.CL
N
8.136
0.371
120
7.434
8.904
IH
7.729
0.4
120
6.976
8.563
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.995
0.068
120
0.868
1.14
1
−0.076
0.939
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.995
0.068
120
0.868
1.14
1
−0.076
0.939
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.017
0.07
120
0.887
1.166
1
0.237
0.813
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.017
0.07
120
0.887
1.166
1
0.237
0.813
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.053
0.073
120
0.918
1.207
1
0.745
0.458
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.053
0.073
120
0.918
1.207
1
0.745
0.458
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.979
0.058
120
0.87
1.1
1
−0.365
0.715
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.979
0.058
120
0.87
1.1
1
−0.365
0.715
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.945
0.056
120
0.841
1.062
1
−0.96
0.339
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.945
0.056
120
0.841
1.062
1
−0.96
0.339
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.966
0.057
120
0.859
1.086
1
−0.59
0.556
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.966
0.057
120
0.859
1.086
1
−0.59
0.556
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Average distance between cells
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
9.251
0.309
0.095
0.033
0.499
8.783
9.959
0.465
−0.424
24
IH
9.145
0.402
0.162
0.044
0.513
8.595
10.171
0.941
1.19
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
9.251
0.309
0.095
0.033
0.499
8.783
9.959
0.465
−0.424
24
IH
9.145
0.402
0.162
0.044
0.513
8.595
10.171
0.941
1.19
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
10.445
0.458
0.209
0.044
0.623
9.524
11.193
−0.529
−0.422
23
IH
10.534
0.327
0.107
0.031
0.568
10.028
11.132
0.398
−0.806
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
10.445
0.458
0.209
0.044
0.623
9.524
11.193
−0.529
−0.422
23
IH
10.534
0.327
0.107
0.031
0.568
10.028
11.132
0.398
−0.806
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.937
0.323
0.104
0.036
0.392
8.331
9.817
0.374
1.329
24
IH
9.13
0.162
0.026
0.018
0.289
8.901
9.404
0.122
−1.165
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
8.937
0.323
0.104
0.036
0.392
8.331
9.817
0.374
1.329
24
IH
9.13
0.162
0.026
0.018
0.289
8.901
9.404
0.122
−1.165
17
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = Avg_Distance ~ Condition * Layer + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
130.79
132.07
153.22
0.83
0.77
0.29
0.28
0.03
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
130.79
132.07
153.22
0.83
0.77
0.29
0.28
0.03
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = Avg_Distance ~ Condition * Layer + (1 | Mouse),
data = data, family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
132.11
133.39
154.55
0.05
0.05
4.78e-03
0.28
0.30
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
132.11
133.39
154.55
0.05
0.05
4.78e-03
0.28
0.30
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = Avg_Distance ~ Condition * Layer + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
9.548
0.063
(9.42, 9.67)
340.030
< .001
Condition1
0.997
0.007
(0.98, 1.01)
-0.460
0.646
Layer1
0.963
0.004
(0.96, 0.97)
-9.395
< .001
Layer2
1.098
0.004
(1.09, 1.11)
23.128
< .001
Condition1 * Layer1
1.009
0.004
(1.00, 1.02)
2.256
0.024 *
Condition1 * Layer2
0.998
0.004
(0.99, 1.01)
-0.380
0.704
Model: Avg_Distance ~ Condition * Layer (122 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
9.548
0.063
(9.42, 9.67)
340.030
< .001
Condition1
0.997
0.007
(0.98, 1.01)
-0.460
0.646
Layer1
0.963
0.004
(0.96, 0.97)
-9.395
< .001
Layer2
1.098
0.004
(1.09, 1.11)
23.128
< .001
Condition1 * Layer1
1.009
0.004
(1.00, 1.02)
2.256
0.024 *
Condition1 * Layer2
0.998
0.004
(0.99, 1.01)
-0.380
0.704
Model: Avg_Distance ~ Condition * Layer (122 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
0.21
1
0.650
Layer
541.49
2
<0.001 ***
Condition:Layer
5.85
2
0.050 *
term
statistic
df
p.value
Condition
0.21
1
0.650
Layer
541.49
2
<0.001 ***
Condition:Layer
5.85
2
0.050 *
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
76.84
90.86
-33.42
66.84
mod_full
8
76.70
99.13
-30.35
60.70
6.15
3
0.100
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
76.84
90.86
-33.42
66.84
mod_full
8
76.70
99.13
-30.35
60.70
6.15
3
0.100
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
9.519
0.084
120
9.354
9.687
IH
9.577
0.095
120
9.391
9.767
Condition
response
SE
df
lower.CL
upper.CL
N
9.519
0.084
120
9.354
9.687
IH
9.577
0.095
120
9.391
9.767
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.994
0.013
120
0.968
1.02
1
−0.46
0.647
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.994
0.013
120
0.968
1.02
1
−0.46
0.647
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Layer
response
SE
df
lower.CL
upper.CL
EGL
9.195
0.071
120
9.055
9.337
ML
10.481
0.082
120
10.321
10.644
IGL
9.032
0.07
120
8.895
9.172
Layer
response
SE
df
lower.CL
upper.CL
EGL
9.195
0.071
120
9.055
9.337
ML
10.481
0.082
120
10.321
10.644
IGL
9.032
0.07
120
8.895
9.172
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
EGL / ML
0.877
0.006
120
0.865
0.889
1
−18.781
<0.001 ***
EGL / IGL
1.018
0.007
120
1.004
1.032
1
2.573
0.011 *
ML / IGL
1.16
0.008
120
1.144
1.177
1
21.339
<0.001 ***
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
EGL / ML
0.877
0.006
120
0.865
0.889
1
−18.781
<0.001 ***
EGL / IGL
1.018
0.007
120
1.004
1.032
1
2.573
0.011 *
ML / IGL
1.16
0.008
120
1.144
1.177
1
21.339
<0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
9.25
0.095
120
9.065
9.44
IH
9.14
0.106
120
8.932
9.353
Condition
response
SE
df
lower.CL
upper.CL
N
9.25
0.095
120
9.065
9.44
IH
9.14
0.106
120
8.932
9.353
Condition
response
SE
df
lower.CL
upper.CL
N
10.433
0.108
120
10.222
10.648
IH
10.529
0.123
120
10.289
10.775
Condition
response
SE
df
lower.CL
upper.CL
N
10.433
0.108
120
10.222
10.648
IH
10.529
0.123
120
10.289
10.775
Condition
response
SE
df
lower.CL
upper.CL
N
8.937
0.091
120
8.758
9.12
IH
9.128
0.106
120
8.92
9.341
Condition
response
SE
df
lower.CL
upper.CL
N
8.937
0.091
120
8.758
9.12
IH
9.128
0.106
120
8.92
9.341
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.012
0.016
120
0.981
1.044
1
0.775
0.440
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.012
0.016
120
0.981
1.044
1
0.775
0.440
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.991
0.015
120
0.961
1.022
1
−0.589
0.557
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.991
0.015
120
0.961
1.022
1
−0.589
0.557
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.979
0.015
120
0.949
1.01
1
−1.364
0.175
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.979
0.015
120
0.949
1.01
1
−1.364
0.175
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.021
0.014
120
0.994
1.05
1
1.519
0.131
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.021
0.014
120
0.994
1.05
1
1.519
0.131
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.034
0.014
120
1.006
1.062
1
2.389
0.018 *
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.034
0.014
120
1.006
1.062
1
2.389
0.018 *
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.012
0.014
120
0.984
1.04
1
0.859
0.392
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.012
0.014
120
0.984
1.04
1
0.859
0.392
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: