19  DAPI [All layers - P12]

Di-Amidino-2-Phenyl-Indole

Data

Description

Variable Description
Layer

Cerebellar layer

Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Nb_Vol

Cell density (10^(-2) cell number/μm^(3))

Avg_Distance

Average distance between cells (μm)

Variable Description
Layer

Cerebellar layer

Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Nb_Vol

Cell density (10^(-2) cell number/μm^(3))

Avg_Distance

Average distance between cells (μm)

Correlations

19.1 Cell Density (Volume)

19.1.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.302 0.738 0.545 0.089 0.951 6.005 9.259 −1.273 2.697 24
IH 8.39 0.919 0.845 0.11 0.902 6.063 9.444 −1.347 1.368 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.302 0.738 0.545 0.089 0.951 6.005 9.259 −1.273 2.697 24
IH 8.39 0.919 0.845 0.11 0.902 6.063 9.444 −1.347 1.368 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 6.671 0.847 0.717 0.127 1.502 5.42 8.316 0.537 −0.908 23
IH 6.638 1.185 1.403 0.178 2.181 4.137 8.173 −0.216 −0.618 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 6.671 0.847 0.717 0.127 1.502 5.42 8.316 0.537 −0.908 23
IH 6.638 1.185 1.403 0.178 2.181 4.137 8.173 −0.216 −0.618 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.19 1.312 1.723 0.16 1.152 4.265 9.711 −1.995 4.391 24
IH 7.788 1.315 1.73 0.169 0.488 4.347 8.673 −2.409 4.757 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.19 1.312 1.723 0.16 1.152 4.265 9.711 −1.995 4.391 24
IH 7.788 1.315 1.73 0.169 0.488 4.347 8.673 −2.409 4.757 17

19.1.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
411.50 412.77 433.93 0.51 0.28 0.32 0.85 0.13
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
411.50 412.77 433.93 0.51 0.28 0.32 0.85 0.13

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data, 
    family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
390.35 391.62 412.78 0.02 0.01 8.36e-03 0.86 0.91
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
390.35 391.62 412.78 0.02 0.01 8.36e-03 0.86 0.91

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

19.1.3 Effects Analysis

```{r}
glmmTMB(formula = Nb_Vol ~ Condition * Layer + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

19.1.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 7.570 0.227 (7.14, 8.03) 67.563 < .001
Condition1 1.010 0.030 (0.95, 1.07) 0.348 0.728
Layer1 1.096 0.019 (1.06, 1.13) 5.363 < .001
Layer2 0.871 0.015 (0.84, 0.90) -8.047 < .001
Condition1 * Layer1 0.987 0.017 (0.95, 1.02) -0.765 0.444
Condition1 * Layer2 0.998 0.017 (0.96, 1.03) -0.130 0.897
Model: Nb_Vol ~ Condition * Layer (122 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 7.570 0.227 (7.14, 8.03) 67.563 < .001
Condition1 1.010 0.030 (0.95, 1.07) 0.348 0.728
Layer1 1.096 0.019 (1.06, 1.13) 5.363 < .001
Layer2 0.871 0.015 (0.84, 0.90) -8.047 < .001
Condition1 * Layer1 0.987 0.017 (0.95, 1.02) -0.765 0.444
Condition1 * Layer2 0.998 0.017 (0.96, 1.03) -0.130 0.897
Model: Nb_Vol ~ Condition * Layer (122 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.12 1 0.730
Layer 67.09 2 <0.001 ***
Condition:Layer 0.94 2 0.630
term statistic df p.value
Condition 0.12 1 0.730
Layer 67.09 2 <0.001 ***
Condition:Layer 0.94 2 0.630

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 370.11 384.13 -180.05 360.11
mod_full 8 375.00 397.43 -179.50 359.00 1.11 3 0.770
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 370.11 384.13 -180.05 360.11
mod_full 8 375.00 397.43 -179.50 359.00 1.11 3 0.770
Important

Our LRT() method removes the predictor plus all its interactions

19.1.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 7.649 0.306 120 7.067 8.279
IH 7.491 0.334 120 6.858 8.183
Condition response SE df lower.CL upper.CL
N 7.649 0.306 120 7.067 8.279
IH 7.491 0.334 120 6.858 8.183
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.021 0.061 120 0.907 1.15 1 0.348 0.729
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.021 0.061 120 0.907 1.15 1 0.348 0.729
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Layer response SE df lower.CL upper.CL
EGL 8.294 0.286 120 7.748 8.879
ML 6.595 0.228 120 6.159 7.062
IGL 7.93 0.273 120 7.406 8.49
Layer response SE df lower.CL upper.CL
EGL 8.294 0.286 120 7.748 8.879
ML 6.595 0.228 120 6.159 7.062
IGL 7.93 0.273 120 7.406 8.49
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
EGL / ML 1.258 0.037 120 1.186 1.334 1 7.741 <0.001 ***
EGL / IGL 1.046 0.031 120 0.987 1.109 1 1.525 0.130
ML / IGL 0.832 0.025 120 0.784 0.882 1 −6.22 <0.001 ***
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
EGL / ML 1.258 0.037 120 1.186 1.334 1 7.741 <0.001 ***
EGL / IGL 1.046 0.031 120 0.987 1.109 1 1.525 0.130
ML / IGL 0.832 0.025 120 0.784 0.882 1 −6.22 <0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 8.273 0.377 120 7.559 9.054
IH 8.316 0.429 120 7.508 9.211
Condition response SE df lower.CL upper.CL
N 8.273 0.377 120 7.559 9.054
IH 8.316 0.429 120 7.508 9.211
Condition response SE df lower.CL upper.CL
N 6.649 0.305 120 6.072 7.281
IH 6.541 0.338 120 5.905 7.245
Condition response SE df lower.CL upper.CL
N 6.649 0.305 120 6.072 7.281
IH 6.541 0.338 120 5.905 7.245
Condition response SE df lower.CL upper.CL
N 8.136 0.371 120 7.434 8.904
IH 7.729 0.4 120 6.976 8.563
Condition response SE df lower.CL upper.CL
N 8.136 0.371 120 7.434 8.904
IH 7.729 0.4 120 6.976 8.563
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.995 0.068 120 0.868 1.14 1 −0.076 0.939
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.995 0.068 120 0.868 1.14 1 −0.076 0.939
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.017 0.07 120 0.887 1.166 1 0.237 0.813
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.017 0.07 120 0.887 1.166 1 0.237 0.813
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.053 0.073 120 0.918 1.207 1 0.745 0.458
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.053 0.073 120 0.918 1.207 1 0.745 0.458
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.979 0.058 120 0.87 1.1 1 −0.365 0.715
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.979 0.058 120 0.87 1.1 1 −0.365 0.715
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.945 0.056 120 0.841 1.062 1 −0.96 0.339
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.945 0.056 120 0.841 1.062 1 −0.96 0.339
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.966 0.057 120 0.859 1.086 1 −0.59 0.556
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.966 0.057 120 0.859 1.086 1 −0.59 0.556
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


19.2 Average distance between cells

19.2.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 9.251 0.309 0.095 0.033 0.499 8.783 9.959 0.465 −0.424 24
IH 9.145 0.402 0.162 0.044 0.513 8.595 10.171 0.941 1.19 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 9.251 0.309 0.095 0.033 0.499 8.783 9.959 0.465 −0.424 24
IH 9.145 0.402 0.162 0.044 0.513 8.595 10.171 0.941 1.19 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 10.445 0.458 0.209 0.044 0.623 9.524 11.193 −0.529 −0.422 23
IH 10.534 0.327 0.107 0.031 0.568 10.028 11.132 0.398 −0.806 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 10.445 0.458 0.209 0.044 0.623 9.524 11.193 −0.529 −0.422 23
IH 10.534 0.327 0.107 0.031 0.568 10.028 11.132 0.398 −0.806 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.937 0.323 0.104 0.036 0.392 8.331 9.817 0.374 1.329 24
IH 9.13 0.162 0.026 0.018 0.289 8.901 9.404 0.122 −1.165 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 8.937 0.323 0.104 0.036 0.392 8.331 9.817 0.374 1.329 24
IH 9.13 0.162 0.026 0.018 0.289 8.901 9.404 0.122 −1.165 17

19.2.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = Avg_Distance ~ Condition * Layer + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
130.79 132.07 153.22 0.83 0.77 0.29 0.28 0.03
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
130.79 132.07 153.22 0.83 0.77 0.29 0.28 0.03

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = Avg_Distance ~ Condition * Layer + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
132.11 133.39 154.55 0.05 0.05 4.78e-03 0.28 0.30
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
132.11 133.39 154.55 0.05 0.05 4.78e-03 0.28 0.30

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

19.2.3 Effects Analysis

```{r}
glmmTMB(formula = Avg_Distance ~ Condition * Layer + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

19.2.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 9.548 0.063 (9.42, 9.67) 340.030 < .001
Condition1 0.997 0.007 (0.98, 1.01) -0.460 0.646
Layer1 0.963 0.004 (0.96, 0.97) -9.395 < .001
Layer2 1.098 0.004 (1.09, 1.11) 23.128 < .001
Condition1 * Layer1 1.009 0.004 (1.00, 1.02) 2.256 0.024 *
Condition1 * Layer2 0.998 0.004 (0.99, 1.01) -0.380 0.704
Model: Avg_Distance ~ Condition * Layer (122 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 9.548 0.063 (9.42, 9.67) 340.030 < .001
Condition1 0.997 0.007 (0.98, 1.01) -0.460 0.646
Layer1 0.963 0.004 (0.96, 0.97) -9.395 < .001
Layer2 1.098 0.004 (1.09, 1.11) 23.128 < .001
Condition1 * Layer1 1.009 0.004 (1.00, 1.02) 2.256 0.024 *
Condition1 * Layer2 0.998 0.004 (0.99, 1.01) -0.380 0.704
Model: Avg_Distance ~ Condition * Layer (122 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.21 1 0.650
Layer 541.49 2 <0.001 ***
Condition:Layer 5.85 2 0.050 *
term statistic df p.value
Condition 0.21 1 0.650
Layer 541.49 2 <0.001 ***
Condition:Layer 5.85 2 0.050 *

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 76.84 90.86 -33.42 66.84
mod_full 8 76.70 99.13 -30.35 60.70 6.15 3 0.100
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 76.84 90.86 -33.42 66.84
mod_full 8 76.70 99.13 -30.35 60.70 6.15 3 0.100
Important

Our LRT() method removes the predictor plus all its interactions

19.2.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 9.519 0.084 120 9.354 9.687
IH 9.577 0.095 120 9.391 9.767
Condition response SE df lower.CL upper.CL
N 9.519 0.084 120 9.354 9.687
IH 9.577 0.095 120 9.391 9.767
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.994 0.013 120 0.968 1.02 1 −0.46 0.647
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.994 0.013 120 0.968 1.02 1 −0.46 0.647
- Results are averaged over the levels of: Layer
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Layer response SE df lower.CL upper.CL
EGL 9.195 0.071 120 9.055 9.337
ML 10.481 0.082 120 10.321 10.644
IGL 9.032 0.07 120 8.895 9.172
Layer response SE df lower.CL upper.CL
EGL 9.195 0.071 120 9.055 9.337
ML 10.481 0.082 120 10.321 10.644
IGL 9.032 0.07 120 8.895 9.172
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
EGL / ML 0.877 0.006 120 0.865 0.889 1 −18.781 <0.001 ***
EGL / IGL 1.018 0.007 120 1.004 1.032 1 2.573 0.011 *
ML / IGL 1.16 0.008 120 1.144 1.177 1 21.339 <0.001 ***
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
EGL / ML 0.877 0.006 120 0.865 0.889 1 −18.781 <0.001 ***
EGL / IGL 1.018 0.007 120 1.004 1.032 1 2.573 0.011 *
ML / IGL 1.16 0.008 120 1.144 1.177 1 21.339 <0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 9.25 0.095 120 9.065 9.44
IH 9.14 0.106 120 8.932 9.353
Condition response SE df lower.CL upper.CL
N 9.25 0.095 120 9.065 9.44
IH 9.14 0.106 120 8.932 9.353
Condition response SE df lower.CL upper.CL
N 10.433 0.108 120 10.222 10.648
IH 10.529 0.123 120 10.289 10.775
Condition response SE df lower.CL upper.CL
N 10.433 0.108 120 10.222 10.648
IH 10.529 0.123 120 10.289 10.775
Condition response SE df lower.CL upper.CL
N 8.937 0.091 120 8.758 9.12
IH 9.128 0.106 120 8.92 9.341
Condition response SE df lower.CL upper.CL
N 8.937 0.091 120 8.758 9.12
IH 9.128 0.106 120 8.92 9.341
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.012 0.016 120 0.981 1.044 1 0.775 0.440
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.012 0.016 120 0.981 1.044 1 0.775 0.440
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.991 0.015 120 0.961 1.022 1 −0.589 0.557
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.991 0.015 120 0.961 1.022 1 −0.589 0.557
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.979 0.015 120 0.949 1.01 1 −1.364 0.175
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.979 0.015 120 0.949 1.01 1 −1.364 0.175
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.021 0.014 120 0.994 1.05 1 1.519 0.131
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.021 0.014 120 0.994 1.05 1 1.519 0.131
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.034 0.014 120 1.006 1.062 1 2.389 0.018 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.034 0.014 120 1.006 1.062 1 2.389 0.018 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.012 0.014 120 0.984 1.04 1 0.859 0.392
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.012 0.014 120 0.984 1.04 1 0.859 0.392
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot: