4 Caspase (ML + PCL)
❖ Data
❖ Description
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_ML_PCL |
Area of ML and PC (μm²) |
Dens_ML_PCL |
Density of cleaved caspase 3^(+) cells in the ML and PC areas (Cells/μm²) |
Prop_C_ML_PCL |
Proportion of cleaved caspase 3^(+) cells marking in the ML and PC areas |
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_ML_PCL |
Area of ML and PC (μm²) |
Dens_ML_PCL |
Density of cleaved caspase 3^(+) cells in the ML and PC areas (Cells/μm²) |
Prop_C_ML_PCL |
Proportion of cleaved caspase 3^(+) cells marking in the ML and PC areas |
❖ Correlations
4.1 Area of the ML and PC
4.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.012 | 0.375 | 0.14 | 0.186 | 0.722 | 1.577 | 2.529 | 0.342 | −1.615 | 6 |
IH | 1.778 | 1.191 | 1.418 | 0.67 | 2.225 | 0.443 | 2.891 | −0.235 | −4.333 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.012 | 0.375 | 0.14 | 0.186 | 0.722 | 1.577 | 2.529 | 0.342 | −1.615 | 6 |
IH | 1.778 | 1.191 | 1.418 | 0.67 | 2.225 | 0.443 | 2.891 | −0.235 | −4.333 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.972 | 1.937 | 3.752 | 0.652 | 2.169 | 1.434 | 7.226 | 1.793 | 3.401 | 8 |
IH | 1.184 | 0.87 | 0.757 | 0.735 | 1.575 | 0.433 | 2.426 | 0.869 | −1.497 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.972 | 1.937 | 3.752 | 0.652 | 2.169 | 1.434 | 7.226 | 1.793 | 3.401 | 8 |
IH | 1.184 | 0.87 | 0.757 | 0.735 | 1.575 | 0.433 | 2.426 | 0.869 | −1.497 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.202 | 0.978 | 0.957 | 0.814 | 2.271 | 0.245 | 2.633 | 0.726 | −1.216 | 11 |
IH | 0.843 | 0.675 | 0.456 | 0.801 | 0.976 | 0.13 | 2.149 | 1.195 | 0.817 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.202 | 0.978 | 0.957 | 0.814 | 2.271 | 0.245 | 2.633 | 0.726 | −1.216 | 11 |
IH | 0.843 | 0.675 | 0.456 | 0.801 | 0.976 | 0.13 | 2.149 | 1.195 | 0.817 | 8 |
4.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_ML_PCL ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
111.39 | 115.75 | 125.29 | 0.81 | 0.36 | 0.70 | 0.59 | 0.42 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
111.39 | 115.75 | 125.29 | 0.81 | 0.36 | 0.70 | 0.59 | 0.42 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = A_ML_PCL ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
130.47 | 134.83 | 144.37 | 0.53 | 0.21 | 0.40 | 0.54 | 0.65 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
130.47 | 134.83 | 144.37 | 0.53 | 0.21 | 0.40 | 0.54 | 0.65 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
4.1.3 Effects Analysis
4.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.304 | 0.266 | (0.87, 1.95) | 1.300 | 0.193 |
Condition1 | 1.375 | 0.281 | (0.92, 2.05) | 1.558 | 0.119 |
Z1 | 1.467 | 0.158 | (1.19, 1.81) | 3.559 | < .001 |
Z2 | 1.234 | 0.123 | (1.01, 1.50) | 2.100 | 0.036 * |
Condition1 * Z1 | 0.926 | 0.099 | (0.75, 1.14) | -0.713 | 0.476 |
Condition1 * Z2 | 1.159 | 0.116 | (0.95, 1.41) | 1.477 | 0.140 |
Model: A_ML_PCL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.304 | 0.266 | (0.87, 1.95) | 1.300 | 0.193 |
Condition1 | 1.375 | 0.281 | (0.92, 2.05) | 1.558 | 0.119 |
Z1 | 1.467 | 0.158 | (1.19, 1.81) | 3.559 | < .001 |
Z2 | 1.234 | 0.123 | (1.01, 1.50) | 2.100 | 0.036 * |
Condition1 * Z1 | 0.926 | 0.099 | (0.75, 1.14) | -0.713 | 0.476 |
Condition1 * Z2 | 1.159 | 0.116 | (0.95, 1.41) | 1.477 | 0.140 |
Model: A_ML_PCL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.43 | 1 | 0.120 |
Z | 37.99 | 2 | <0.001 *** |
Condition:Z | 2.21 | 2 | 0.330 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.43 | 1 | 0.120 |
Z | 37.99 | 2 | <0.001 *** |
Condition:Z | 2.21 | 2 | 0.330 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 95.31 | 104.00 | -42.66 | 85.31 | |||
mod_full | 8 | 96.47 | 110.38 | -40.24 | 80.47 | 4.84 | 3 | 0.180 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 95.31 | 104.00 | -42.66 | 85.31 | |||
mod_full | 8 | 96.47 | 110.38 | -40.24 | 80.47 | 4.84 | 3 | 0.180 |
4.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.793 | 0.489 | 40 | 1.034 | 3.11 |
IH | 0.949 | 0.289 | 40 | 0.513 | 1.755 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.793 | 0.489 | 40 | 1.034 | 3.11 |
IH | 0.949 | 0.289 | 40 | 0.513 | 1.755 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.89 | 0.772 | 40 | 0.827 | 4.316 | 1 | 1.558 | 0.127 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.89 | 0.772 | 40 | 0.827 | 4.316 | 1 | 1.558 | 0.127 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.913 | 0.455 | 40 | 1.182 | 3.095 |
Med | 1.609 | 0.368 | 40 | 1.013 | 2.555 |
Post | 0.721 | 0.156 | 40 | 0.465 | 1.118 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.913 | 0.455 | 40 | 1.182 | 3.095 |
Med | 1.609 | 0.368 | 40 | 1.013 | 2.555 |
Post | 0.721 | 0.156 | 40 | 0.465 | 1.118 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.189 | 0.219 | 40 | 0.82 | 1.724 | 1 | 0.94 | 0.353 |
Ant / Post | 2.653 | 0.473 | 40 | 1.851 | 3.803 | 1 | 5.478 | <0.001 *** |
Med / Post | 2.232 | 0.367 | 40 | 1.601 | 3.111 | 1 | 4.885 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.189 | 0.219 | 40 | 0.82 | 1.724 | 1 | 0.94 | 0.353 |
Ant / Post | 2.653 | 0.473 | 40 | 1.851 | 3.803 | 1 | 5.478 | <0.001 *** |
Med / Post | 2.232 | 0.367 | 40 | 1.601 | 3.111 | 1 | 4.885 | <0.001 *** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.436 | 0.765 | 40 | 1.291 | 4.596 |
IH | 1.502 | 0.537 | 40 | 0.729 | 3.095 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.436 | 0.765 | 40 | 1.291 | 4.596 |
IH | 1.502 | 0.537 | 40 | 0.729 | 3.095 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.564 | 0.766 | 40 | 1.402 | 4.691 |
IH | 1.01 | 0.35 | 40 | 0.501 | 2.033 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.564 | 0.766 | 40 | 1.402 | 4.691 |
IH | 1.01 | 0.35 | 40 | 0.501 | 2.033 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.923 | 0.266 | 40 | 0.515 | 1.653 |
IH | 0.563 | 0.182 | 40 | 0.293 | 1.083 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.923 | 0.266 | 40 | 0.515 | 1.653 |
IH | 0.563 | 0.182 | 40 | 0.293 | 1.083 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.622 | 0.772 | 40 | 0.62 | 4.243 | 1 | 1.016 | 0.316 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.622 | 0.772 | 40 | 0.62 | 4.243 | 1 | 1.016 | 0.316 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 2.54 | 1.162 | 40 | 1.008 | 6.403 | 1 | 2.038 | 0.048 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 2.54 | 1.162 | 40 | 1.008 | 6.403 | 1 | 2.038 | 0.048 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.638 | 0.709 | 40 | 0.683 | 3.93 | 1 | 1.14 | 0.261 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.638 | 0.709 | 40 | 0.683 | 3.93 | 1 | 1.14 | 0.261 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.639 | 0.235 | 40 | 0.303 | 1.344 | 1 | −1.218 | 0.230 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.639 | 0.235 | 40 | 0.303 | 1.344 | 1 | −1.218 | 0.230 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.99 | 0.349 | 40 | 0.485 | 2.02 | 1 | −0.028 | 0.977 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.99 | 0.349 | 40 | 0.485 | 2.02 | 1 | −0.028 | 0.977 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.55 | 0.507 | 40 | 0.801 | 3.003 | 1 | 1.341 | 0.188 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.55 | 0.507 | 40 | 0.801 | 3.003 | 1 | 1.341 | 0.188 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
4.2 Density of Cleaved Caspase 3+ cells (ML and PC)
4.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 118.681 | 62.476 | 3,903.221 | 0.526 | 110.229 | 21.181 | 180.048 | −0.921 | −0.81 | 6 |
IH | 381.893 | 312.177 | 97,454.741 | 0.817 | 593.951 | 70.506 | 792.046 | 0.773 | −0.062 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 118.681 | 62.476 | 3,903.221 | 0.526 | 110.229 | 21.181 | 180.048 | −0.921 | −0.81 | 6 |
IH | 381.893 | 312.177 | 97,454.741 | 0.817 | 593.951 | 70.506 | 792.046 | 0.773 | −0.062 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 196.461 | 116.389 | 13,546.434 | 0.592 | 217.329 | 33.484 | 345.084 | −0.206 | −1.694 | 8 |
IH | 180.429 | 188.765 | 35,632.324 | 1.046 | 272.29 | 20.613 | 505.988 | 1.836 | 3.76 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 196.461 | 116.389 | 13,546.434 | 0.592 | 217.329 | 33.484 | 345.084 | −0.206 | −1.694 | 8 |
IH | 180.429 | 188.765 | 35,632.324 | 1.046 | 272.29 | 20.613 | 505.988 | 1.836 | 3.76 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 173.485 | 115.28 | 13,289.445 | 0.664 | 246.997 | 16.351 | 344.711 | −0.075 | −1.341 | 11 |
IH | 246.381 | 234.398 | 54,942.373 | 0.951 | 361.759 | 10.49 | 697.585 | 1.119 | 0.684 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 173.485 | 115.28 | 13,289.445 | 0.664 | 246.997 | 16.351 | 344.711 | −0.075 | −1.341 | 11 |
IH | 246.381 | 234.398 | 54,942.373 | 0.951 | 361.759 | 10.49 | 697.585 | 1.119 | 0.684 | 8 |
4.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Dens_ML_PCL ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
545.01 | 549.37 | 558.91 | 0.45 | 0.07 | 0.41 | 110.71 | 0.73 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
545.01 | 549.37 | 558.91 | 0.45 | 0.07 | 0.41 | 110.71 | 0.73 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Dens_ML_PCL ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
561.63 | 565.99 | 575.53 | 3.32e-05 | 9.40e-06 | 2.38e-05 | 100.24 | 119.21 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
561.63 | 565.99 | 575.53 | 3.32e-05 | 9.40e-06 | 2.38e-05 | 100.24 | 119.21 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
4.2.3 Effects Analysis
4.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 190.524 | 41.772 | (123.97, 292.80) | 23.944 | < .001 |
Condition1 | 0.812 | 0.178 | (0.53, 1.25) | -0.951 | 0.341 |
Z1 | 1.122 | 0.217 | (0.77, 1.64) | 0.593 | 0.553 |
Z2 | 1.006 | 0.187 | (0.70, 1.45) | 0.035 | 0.972 |
Condition1 * Z1 | 0.754 | 0.147 | (0.51, 1.10) | -1.453 | 0.146 |
Condition1 * Z2 | 1.221 | 0.227 | (0.85, 1.76) | 1.073 | 0.283 |
Model: Dens_ML_PCL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 190.524 | 41.772 | (123.97, 292.80) | 23.944 | < .001 |
Condition1 | 0.812 | 0.178 | (0.53, 1.25) | -0.951 | 0.341 |
Z1 | 1.122 | 0.217 | (0.77, 1.64) | 0.593 | 0.553 |
Z2 | 1.006 | 0.187 | (0.70, 1.45) | 0.035 | 0.972 |
Condition1 * Z1 | 0.754 | 0.147 | (0.51, 1.10) | -1.453 | 0.146 |
Condition1 * Z2 | 1.221 | 0.227 | (0.85, 1.76) | 1.073 | 0.283 |
Model: Dens_ML_PCL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.91 | 1 | 0.340 |
Z | 0.55 | 2 | 0.760 |
Condition:Z | 2.18 | 2 | 0.340 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.91 | 1 | 0.340 |
Z | 0.55 | 2 | 0.760 |
Condition:Z | 2.18 | 2 | 0.340 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 532.33 | 541.02 | -261.17 | 522.33 | |||
mod_full | 8 | 534.98 | 548.88 | -259.49 | 518.98 | 3.35 | 3 | 0.340 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 532.33 | 541.02 | -261.17 | 522.33 | |||
mod_full | 8 | 534.98 | 548.88 | -259.49 | 518.98 | 3.35 | 3 | 0.340 |
4.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 154.683 | 44.769 | 40 | 86.18 | 277.64 |
IH | 234.669 | 77.233 | 40 | 120.664 | 456.388 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 154.683 | 44.769 | 40 | 86.18 | 277.64 |
IH | 234.669 | 77.233 | 40 | 120.664 | 456.388 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.659 | 0.289 | 40 | 0.272 | 1.598 | 1 | −0.951 | 0.347 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.659 | 0.289 | 40 | 0.272 | 1.598 | 1 | −0.951 | 0.347 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 213.717 | 66.273 | 40 | 114.197 | 399.966 |
Med | 191.754 | 56.022 | 40 | 106.245 | 346.085 |
Post | 168.758 | 43.432 | 40 | 100.315 | 283.899 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 213.717 | 66.273 | 40 | 114.197 | 399.966 |
Med | 191.754 | 56.022 | 40 | 106.245 | 346.085 |
Post | 168.758 | 43.432 | 40 | 100.315 | 283.899 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.115 | 0.374 | 40 | 0.566 | 2.196 | 1 | 0.323 | 0.748 |
Ant / Post | 1.266 | 0.408 | 40 | 0.66 | 2.428 | 1 | 0.733 | 0.468 |
Med / Post | 1.136 | 0.349 | 40 | 0.611 | 2.114 | 1 | 0.416 | 0.680 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.115 | 0.374 | 40 | 0.566 | 2.196 | 1 | 0.323 | 0.748 |
Ant / Post | 1.266 | 0.408 | 40 | 0.66 | 2.428 | 1 | 0.733 | 0.468 |
Med / Post | 1.136 | 0.349 | 40 | 0.611 | 2.114 | 1 | 0.416 | 0.680 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 130.791 | 53.245 | 40 | 57.445 | 297.786 |
IH | 349.221 | 162.975 | 40 | 135.98 | 896.866 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 130.791 | 53.245 | 40 | 57.445 | 297.786 |
IH | 349.221 | 162.975 | 40 | 135.98 | 896.866 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 190.078 | 67.775 | 40 | 92.461 | 390.753 |
IH | 193.446 | 89.442 | 40 | 75.984 | 492.486 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 190.078 | 67.775 | 40 | 92.461 | 390.753 |
IH | 193.446 | 89.442 | 40 | 75.984 | 492.486 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 148.874 | 50.458 | 40 | 75.046 | 295.335 |
IH | 191.297 | 73.399 | 40 | 88.09 | 415.424 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 148.874 | 50.458 | 40 | 75.046 | 295.335 |
IH | 191.297 | 73.399 | 40 | 88.09 | 415.424 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.375 | 0.232 | 40 | 0.107 | 1.307 | 1 | −1.588 | 0.120 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.375 | 0.232 | 40 | 0.107 | 1.307 | 1 | −1.588 | 0.120 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.983 | 0.573 | 40 | 0.302 | 3.195 | 1 | −0.03 | 0.976 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.983 | 0.573 | 40 | 0.302 | 3.195 | 1 | −0.03 | 0.976 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.778 | 0.396 | 40 | 0.278 | 2.178 | 1 | −0.492 | 0.625 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.778 | 0.396 | 40 | 0.278 | 2.178 | 1 | −0.492 | 0.625 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.381 | 0.259 | 40 | 0.096 | 1.508 | 1 | −1.417 | 0.164 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.381 | 0.259 | 40 | 0.096 | 1.508 | 1 | −1.417 | 0.164 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.481 | 0.303 | 40 | 0.135 | 1.721 | 1 | −1.16 | 0.253 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.481 | 0.303 | 40 | 0.135 | 1.721 | 1 | −1.16 | 0.253 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.263 | 0.756 | 40 | 0.376 | 4.236 | 1 | 0.389 | 0.699 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.263 | 0.756 | 40 | 0.376 | 4.236 | 1 | 0.389 | 0.699 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
4.3 Proportion of Cleaved Caspase 3+ marking (ML and PC)
4.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.006 | 0.004 | 0 | 0.583 | 0.007 | 0.001 | 0.011 | −0.524 | −1.109 | 6 |
IH | 0.021 | 0.016 | 0 | 0.765 | 0.031 | 0.004 | 0.04 | 0.259 | −1.662 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.006 | 0.004 | 0 | 0.583 | 0.007 | 0.001 | 0.011 | −0.524 | −1.109 | 6 |
IH | 0.021 | 0.016 | 0 | 0.765 | 0.031 | 0.004 | 0.04 | 0.259 | −1.662 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.011 | 0.008 | 0 | 0.698 | 0.014 | 0.001 | 0.023 | 0.195 | −1.202 | 8 |
IH | 0.01 | 0.012 | 0 | 1.194 | 0.018 | 0.001 | 0.032 | 1.935 | 3.946 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.011 | 0.008 | 0 | 0.698 | 0.014 | 0.001 | 0.023 | 0.195 | −1.202 | 8 |
IH | 0.01 | 0.012 | 0 | 1.194 | 0.018 | 0.001 | 0.032 | 1.935 | 3.946 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.009 | 0.007 | 0 | 0.708 | 0.012 | 0.001 | 0.02 | 0.064 | −1.157 | 11 |
IH | 0.013 | 0.014 | 0 | 1.014 | 0.02 | 0 | 0.04 | 1.263 | 1.185 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.009 | 0.007 | 0 | 0.708 | 0.012 | 0.001 | 0.02 | 0.064 | −1.157 | 11 |
IH | 0.013 | 0.014 | 0 | 1.014 | 0.02 | 0 | 0.04 | 1.263 | 1.185 | 8 |
4.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_ML_PCL ~ Condition * Z + (1 | Mouse),
data = data, family = beta_family("logit"), REML = TRUE,
ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-280.20 | -275.84 | -266.30 | 0.61 | 0.14 | 0.55 | 5.81e-03 | 223.06 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-280.20 | -275.84 | -266.30 | 0.61 | 0.14 | 0.55 | 5.81e-03 | 223.06 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_ML_PCL ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-258.73 | -254.37 | -244.83 | 1.00 | 0.27 | 1.00 | 5.67e-03 | 6.75e-03 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-258.73 | -254.37 | -244.83 | 1.00 | 0.27 | 1.00 | 5.67e-03 | 6.75e-03 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
4.3.3 Effects Analysis
4.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.011 | 0.003 | (7.35e-03, 0.02) | -20.118 | < .001 |
Condition1 | 0.775 | 0.166 | (0.51, 1.18) | -1.188 | 0.235 |
Z1 | 0.985 | 0.148 | (0.73, 1.32) | -0.102 | 0.918 |
Z2 | 1.047 | 0.150 | (0.79, 1.39) | 0.322 | 0.747 |
Condition1 * Z1 | 0.673 | 0.102 | (0.50, 0.90) | -2.622 | 0.009 ** |
Condition1 * Z2 | 1.334 | 0.190 | (1.01, 1.76) | 2.017 | 0.044 * |
Model: Prop_C_ML_PCL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.011 | 0.003 | (7.35e-03, 0.02) | -20.118 | < .001 |
Condition1 | 0.775 | 0.166 | (0.51, 1.18) | -1.188 | 0.235 |
Z1 | 0.985 | 0.148 | (0.73, 1.32) | -0.102 | 0.918 |
Z2 | 1.047 | 0.150 | (0.79, 1.39) | 0.322 | 0.747 |
Condition1 * Z1 | 0.673 | 0.102 | (0.50, 0.90) | -2.622 | 0.009 ** |
Condition1 * Z2 | 1.334 | 0.190 | (1.01, 1.76) | 2.017 | 0.044 * |
Model: Prop_C_ML_PCL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.41 | 1 | 0.230 |
Z | 0.12 | 2 | 0.940 |
Condition:Z | 7.14 | 2 | 0.030 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.41 | 1 | 0.230 |
Z | 0.12 | 2 | 0.940 |
Condition:Z | 7.14 | 2 | 0.030 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -290.56 | -281.87 | 150.28 | -300.56 | |||
mod_full | 8 | -292.22 | -278.32 | 154.11 | -308.22 | 7.67 | 3 | 0.050 * |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -290.56 | -281.87 | 150.28 | -300.56 | |||
mod_full | 8 | -292.22 | -278.32 | 154.11 | -308.22 | 7.67 | 3 | 0.050 * |
4.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.009 | 0.003 | 40 | 0.005 | 0.016 |
IH | 0.014 | 0.005 | 40 | 0.008 | 0.027 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.009 | 0.003 | 40 | 0.005 | 0.016 |
IH | 0.014 | 0.005 | 40 | 0.008 | 0.027 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.6 | 0.258 | 40 | 0.252 | 1.43 | 1 | −1.188 | 0.242 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.6 | 0.258 | 40 | 0.252 | 1.43 | 1 | −1.188 | 0.242 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.011 | 0.003 | 40 | 0.006 | 0.019 |
Med | 0.012 | 0.003 | 40 | 0.007 | 0.02 |
Post | 0.011 | 0.003 | 40 | 0.007 | 0.018 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.011 | 0.003 | 40 | 0.006 | 0.019 |
Med | 0.012 | 0.003 | 40 | 0.007 | 0.02 |
Post | 0.011 | 0.003 | 40 | 0.007 | 0.018 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.94 | 0.248 | 40 | 0.552 | 1.601 | 1 | −0.233 | 0.817 |
Ant / Post | 1.015 | 0.244 | 40 | 0.625 | 1.65 | 1 | 0.064 | 0.950 |
Med / Post | 1.08 | 0.245 | 40 | 0.683 | 1.708 | 1 | 0.338 | 0.737 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.94 | 0.248 | 40 | 0.552 | 1.601 | 1 | −0.233 | 0.817 |
Ant / Post | 1.015 | 0.244 | 40 | 0.625 | 1.65 | 1 | 0.064 | 0.950 |
Med / Post | 1.08 | 0.245 | 40 | 0.683 | 1.708 | 1 | 0.338 | 0.737 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.006 | 0.002 | 40 | 0.003 | 0.013 |
IH | 0.021 | 0.008 | 40 | 0.01 | 0.044 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.006 | 0.002 | 40 | 0.003 | 0.013 |
IH | 0.021 | 0.008 | 40 | 0.01 | 0.044 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.012 | 0.004 | 40 | 0.006 | 0.024 |
IH | 0.011 | 0.005 | 40 | 0.005 | 0.025 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.012 | 0.004 | 40 | 0.006 | 0.024 |
IH | 0.011 | 0.005 | 40 | 0.005 | 0.025 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.009 | 0.003 | 40 | 0.005 | 0.018 |
IH | 0.013 | 0.004 | 40 | 0.006 | 0.025 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.009 | 0.003 | 40 | 0.005 | 0.018 |
IH | 0.013 | 0.004 | 40 | 0.006 | 0.025 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.272 | 0.15 | 40 | 0.089 | 0.829 | 1 | −2.361 | 0.023 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.272 | 0.15 | 40 | 0.089 | 0.829 | 1 | −2.361 | 0.023 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.068 | 0.553 | 40 | 0.375 | 3.04 | 1 | 0.127 | 0.900 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.068 | 0.553 | 40 | 0.375 | 3.04 | 1 | 0.127 | 0.900 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.744 | 0.35 | 40 | 0.288 | 1.923 | 1 | −0.629 | 0.533 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.744 | 0.35 | 40 | 0.288 | 1.923 | 1 | −0.629 | 0.533 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.255 | 0.134 | 40 | 0.088 | 0.74 | 1 | −2.591 | 0.013 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.255 | 0.134 | 40 | 0.088 | 0.74 | 1 | −2.591 | 0.013 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.366 | 0.177 | 40 | 0.138 | 0.972 | 1 | −2.081 | 0.044 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.366 | 0.177 | 40 | 0.138 | 0.972 | 1 | −2.081 | 0.044 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.434 | 0.65 | 40 | 0.574 | 3.585 | 1 | 0.796 | 0.431 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.434 | 0.65 | 40 | 0.574 | 3.585 | 1 | 0.796 | 0.431 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot: