14 Weight [Adults]
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Weight |
Mouse Weight (g) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Stage |
Developmental stage |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Weight |
Mouse Weight (g) |
❖ Correlations
14.1 Weight evolution in time (Adults)
14.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 17.229 | 2.866 | 8.215 | 0.166 | 3.3 | 14.7 | 24.3 | 1.469 | 1.774 | 14 |
IH | 20.04 | 2.378 | 5.656 | 0.119 | 3.95 | 16 | 23.5 | −0.256 | −0.839 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 17.229 | 2.866 | 8.215 | 0.166 | 3.3 | 14.7 | 24.3 | 1.469 | 1.774 | 14 |
IH | 20.04 | 2.378 | 5.656 | 0.119 | 3.95 | 16 | 23.5 | −0.256 | −0.839 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 16.864 | 3 | 8.999 | 0.178 | 3.75 | 14.2 | 24.2 | 1.481 | 1.628 | 14 |
IH | 19.99 | 2.256 | 5.088 | 0.113 | 4.125 | 16.7 | 23.3 | 0.045 | −1.218 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 16.864 | 3 | 8.999 | 0.178 | 3.75 | 14.2 | 24.2 | 1.481 | 1.628 | 14 |
IH | 19.99 | 2.256 | 5.088 | 0.113 | 4.125 | 16.7 | 23.3 | 0.045 | −1.218 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.193 | 2.085 | 4.347 | 0.109 | 2.65 | 16.8 | 24.5 | 1.427 | 2.141 | 14 |
IH | 19.57 | 2.777 | 7.713 | 0.142 | 4.8 | 15.8 | 23.9 | 0.086 | −1.5 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.193 | 2.085 | 4.347 | 0.109 | 2.65 | 16.8 | 24.5 | 1.427 | 2.141 | 14 |
IH | 19.57 | 2.777 | 7.713 | 0.142 | 4.8 | 15.8 | 23.9 | 0.086 | −1.5 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.536 | 2.041 | 4.166 | 0.104 | 2.4 | 16.9 | 24.8 | 1.381 | 2.436 | 14 |
IH | 21.11 | 2.242 | 5.025 | 0.106 | 3.625 | 18.2 | 24.7 | 0.255 | −1.103 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 19.536 | 2.041 | 4.166 | 0.104 | 2.4 | 16.9 | 24.8 | 1.381 | 2.436 | 14 |
IH | 21.11 | 2.242 | 5.025 | 0.106 | 3.625 | 18.2 | 24.7 | 0.255 | −1.103 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.107 | 2.144 | 4.596 | 0.107 | 1.875 | 17.5 | 25.6 | 1.47 | 2.529 | 14 |
IH | 20.61 | 2.037 | 4.148 | 0.099 | 2.7 | 18.2 | 24.4 | 0.936 | 0.164 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.107 | 2.144 | 4.596 | 0.107 | 1.875 | 17.5 | 25.6 | 1.47 | 2.529 | 14 |
IH | 20.61 | 2.037 | 4.148 | 0.099 | 2.7 | 18.2 | 24.4 | 0.936 | 0.164 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.414 | 2.091 | 4.374 | 0.102 | 2.425 | 18.2 | 25.5 | 1.303 | 1.687 | 14 |
IH | 21.5 | 2.578 | 6.647 | 0.12 | 4.425 | 18 | 25.2 | 0.181 | −1.459 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.414 | 2.091 | 4.374 | 0.102 | 2.425 | 18.2 | 25.5 | 1.303 | 1.687 | 14 |
IH | 21.5 | 2.578 | 6.647 | 0.12 | 4.425 | 18 | 25.2 | 0.181 | −1.459 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.471 | 2.246 | 5.045 | 0.11 | 2.675 | 17.8 | 25.8 | 1.235 | 1.4 | 14 |
IH | 21.81 | 2.678 | 7.17 | 0.123 | 4.875 | 18.2 | 25.5 | 0.034 | −1.748 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 20.471 | 2.246 | 5.045 | 0.11 | 2.675 | 17.8 | 25.8 | 1.235 | 1.4 | 14 |
IH | 21.81 | 2.678 | 7.17 | 0.123 | 4.875 | 18.2 | 25.5 | 0.034 | −1.748 | 10 |
❖ Evolution:
14.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Weight ~ Condition * Stage + ar1(Stage + 0 |
data = data, family = Gamma("log"), REML = TRUE,
Mouse), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
609.76 | 613.84 | 662.87 | 0.91 | 0.91 | 0 | 0.28 | 0.02 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
609.76 | 613.84 | 662.87 | 0.91 | 0.91 | 0 | 0.28 | 0.02 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Weight ~ Condition * Stage + (Stage || Mouse),
data = data, family = Gamma("log"), REML = TRUE, start = list(beta = c(I(mean(data$Weight)),
rep(0, 13))), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
648.04 | 655.02 | 716.77 | 0.79 | 0.62 | 0.04 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
648.04 | 655.02 | 716.77 | 0.79 | 0.62 | 0.04 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
14.1.3 Effects Analysis
14.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 19.710 | 0.485 | (18.78, 20.68) | 121.145 | < .001 |
Condition1 | 0.961 | 0.024 | (0.92, 1.01) | -1.636 | 0.102 |
Stage1 | 0.934 | 0.009 | (0.92, 0.95) | -6.890 | < .001 |
Stage2 | 0.923 | 0.008 | (0.91, 0.94) | -9.647 | < .001 |
Stage3 | 0.976 | 0.007 | (0.96, 0.99) | -3.299 | < .001 |
Stage4 | 1.025 | 0.007 | (1.01, 1.04) | 3.666 | < .001 |
Stage5 | 1.028 | 0.007 | (1.01, 1.04) | 3.862 | < .001 |
Stage6 | 1.057 | 0.009 | (1.04, 1.07) | 6.686 | < .001 |
Condition1 * Stage1 | 0.963 | 0.010 | (0.94, 0.98) | -3.831 | < .001 |
Condition1 * Stage2 | 0.953 | 0.008 | (0.94, 0.97) | -5.808 | < .001 |
Condition1 * Stage3 | 1.033 | 0.007 | (1.02, 1.05) | 4.505 | < .001 |
Condition1 * Stage4 | 1.002 | 0.007 | (0.99, 1.02) | 0.241 | 0.810 |
Condition1 * Stage5 | 1.028 | 0.007 | (1.01, 1.04) | 3.792 | < .001 |
Condition1 * Stage6 | 1.015 | 0.008 | (1.00, 1.03) | 1.828 | 0.068 |
Model: Weight ~ Condition * Stage (168 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 19.710 | 0.485 | (18.78, 20.68) | 121.145 | < .001 |
Condition1 | 0.961 | 0.024 | (0.92, 1.01) | -1.636 | 0.102 |
Stage1 | 0.934 | 0.009 | (0.92, 0.95) | -6.890 | < .001 |
Stage2 | 0.923 | 0.008 | (0.91, 0.94) | -9.647 | < .001 |
Stage3 | 0.976 | 0.007 | (0.96, 0.99) | -3.299 | < .001 |
Stage4 | 1.025 | 0.007 | (1.01, 1.04) | 3.666 | < .001 |
Stage5 | 1.028 | 0.007 | (1.01, 1.04) | 3.862 | < .001 |
Stage6 | 1.057 | 0.009 | (1.04, 1.07) | 6.686 | < .001 |
Condition1 * Stage1 | 0.963 | 0.010 | (0.94, 0.98) | -3.831 | < .001 |
Condition1 * Stage2 | 0.953 | 0.008 | (0.94, 0.97) | -5.808 | < .001 |
Condition1 * Stage3 | 1.033 | 0.007 | (1.02, 1.05) | 4.505 | < .001 |
Condition1 * Stage4 | 1.002 | 0.007 | (0.99, 1.02) | 0.241 | 0.810 |
Condition1 * Stage5 | 1.028 | 0.007 | (1.01, 1.04) | 3.792 | < .001 |
Condition1 * Stage6 | 1.015 | 0.008 | (1.00, 1.03) | 1.828 | 0.068 |
Model: Weight ~ Condition * Stage (168 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.68 | 1 | 0.100 |
Stage | 108.61 | 6 | <0.001 *** |
Condition:Stage | 79.97 | 6 | <0.001 *** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.68 | 1 | 0.100 |
Stage | 108.61 | 6 | <0.001 *** |
Condition:Stage | 79.97 | 6 | <0.001 *** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 10 | 557.64 | 588.87 | -268.82 | 537.64 | |||
mod_full | 17 | 499.82 | 552.92 | -232.91 | 465.82 | 71.82 | 7 | <0.001 *** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 10 | 557.64 | 588.87 | -268.82 | 537.64 | |||
mod_full | 17 | 499.82 | 552.92 | -232.91 | 465.82 | 71.82 | 7 | <0.001 *** |
14.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.933 | 0.601 | 165 | 17.782 | 20.158 |
IH | 20.52 | 0.771 | 165 | 19.052 | 22.101 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.933 | 0.601 | 165 | 17.782 | 20.158 |
IH | 20.52 | 0.771 | 165 | 19.052 | 22.101 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 1.084 | 0.053 | 165 | 0.983 | 1.194 | 1 | 1.636 | 0.104 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
IH / N | 1.084 | 0.053 | 165 | 0.983 | 1.194 | 1 | 1.636 | 0.104 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P49 | 18.414 | 0.478 | 165 | 17.494 | 19.384 |
P51 | 18.191 | 0.473 | 165 | 17.282 | 19.148 |
P53 | 19.246 | 0.5 | 165 | 18.284 | 20.259 |
P56 | 20.21 | 0.525 | 165 | 19.199 | 21.273 |
P58 | 20.268 | 0.526 | 165 | 19.255 | 21.335 |
P60 | 20.837 | 0.541 | 165 | 19.796 | 21.934 |
P63 | 21.004 | 0.546 | 165 | 19.954 | 22.11 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P49 | 18.414 | 0.478 | 165 | 17.494 | 19.384 |
P51 | 18.191 | 0.473 | 165 | 17.282 | 19.148 |
P53 | 19.246 | 0.5 | 165 | 18.284 | 20.259 |
P56 | 20.21 | 0.525 | 165 | 19.199 | 21.273 |
P58 | 20.268 | 0.526 | 165 | 19.255 | 21.335 |
P60 | 20.837 | 0.541 | 165 | 19.796 | 21.934 |
P63 | 21.004 | 0.546 | 165 | 19.954 | 22.11 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "consec", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P51 / P49 | 0.988 | 0.01 | 165 | 0.969 | 1.007 | 1 | −1.266 | 0.207 |
P53 / P51 | 1.058 | 0.01 | 165 | 1.038 | 1.078 | 1 | 5.844 | <0.001 *** |
P56 / P53 | 1.05 | 0.01 | 165 | 1.03 | 1.07 | 1 | 5.063 | <0.001 *** |
P58 / P56 | 1.003 | 0.01 | 165 | 0.984 | 1.022 | 1 | 0.3 | 0.765 |
P60 / P58 | 1.028 | 0.01 | 165 | 1.009 | 1.048 | 1 | 2.871 | 0.005 ** |
P63 / P60 | 1.008 | 0.01 | 165 | 0.989 | 1.027 | 1 | 0.827 | 0.410 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P51 / P49 | 0.988 | 0.01 | 165 | 0.969 | 1.007 | 1 | −1.266 | 0.207 |
P53 / P51 | 1.058 | 0.01 | 165 | 1.038 | 1.078 | 1 | 5.844 | <0.001 *** |
P56 / P53 | 1.05 | 0.01 | 165 | 1.03 | 1.07 | 1 | 5.063 | <0.001 *** |
P58 / P56 | 1.003 | 0.01 | 165 | 0.984 | 1.022 | 1 | 0.3 | 0.765 |
P60 / P58 | 1.028 | 0.01 | 165 | 1.009 | 1.048 | 1 | 2.871 | 0.005 ** |
P63 / P60 | 1.008 | 0.01 | 165 | 0.989 | 1.027 | 1 | 0.827 | 0.410 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 17.031 | 0.571 | 165 | 15.94 | 18.197 |
IH | 19.91 | 0.79 | 165 | 18.41 | 21.532 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 17.031 | 0.571 | 165 | 15.94 | 18.197 |
IH | 19.91 | 0.79 | 165 | 18.41 | 21.532 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 16.649 | 0.558 | 165 | 15.583 | 17.789 |
IH | 19.875 | 0.789 | 165 | 18.378 | 21.495 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 16.649 | 0.558 | 165 | 15.583 | 17.789 |
IH | 19.875 | 0.789 | 165 | 18.378 | 21.495 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 19.098 | 0.64 | 165 | 17.875 | 20.406 |
IH | 19.395 | 0.77 | 165 | 17.934 | 20.976 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 19.098 | 0.64 | 165 | 17.875 | 20.406 |
IH | 19.395 | 0.77 | 165 | 17.934 | 20.976 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 19.444 | 0.652 | 165 | 18.198 | 20.775 |
IH | 21.005 | 0.833 | 165 | 19.423 | 22.717 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 19.444 | 0.652 | 165 | 18.198 | 20.775 |
IH | 21.005 | 0.833 | 165 | 19.423 | 22.717 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.009 | 0.671 | 165 | 18.727 | 21.379 |
IH | 20.531 | 0.815 | 165 | 18.984 | 22.204 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.009 | 0.671 | 165 | 18.727 | 21.379 |
IH | 20.531 | 0.815 | 165 | 18.984 | 22.204 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.322 | 0.681 | 165 | 19.02 | 21.713 |
IH | 21.366 | 0.848 | 165 | 19.756 | 23.107 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.322 | 0.681 | 165 | 19.02 | 21.713 |
IH | 21.366 | 0.848 | 165 | 19.756 | 23.107 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.365 | 0.683 | 165 | 19.06 | 21.759 |
IH | 21.664 | 0.86 | 165 | 20.032 | 23.429 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 20.365 | 0.683 | 165 | 19.06 | 21.759 |
IH | 21.664 | 0.86 | 165 | 20.032 | 23.429 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.855 | 0.044 | 165 | 0.772 | 0.948 | 1 | −3.006 | 0.003 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.855 | 0.044 | 165 | 0.772 | 0.948 | 1 | −3.006 | 0.003 ** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.838 | 0.044 | 165 | 0.756 | 0.928 | 1 | −3.409 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.838 | 0.044 | 165 | 0.756 | 0.928 | 1 | −3.409 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.985 | 0.051 | 165 | 0.889 | 1.091 | 1 | −0.297 | 0.767 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.985 | 0.051 | 165 | 0.889 | 1.091 | 1 | −0.297 | 0.767 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.926 | 0.048 | 165 | 0.835 | 1.026 | 1 | −1.487 | 0.139 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.926 | 0.048 | 165 | 0.835 | 1.026 | 1 | −1.487 | 0.139 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.975 | 0.051 | 165 | 0.88 | 1.08 | 1 | −0.495 | 0.621 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.975 | 0.051 | 165 | 0.88 | 1.08 | 1 | −0.495 | 0.621 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.951 | 0.049 | 165 | 0.858 | 1.054 | 1 | −0.965 | 0.336 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.951 | 0.049 | 165 | 0.858 | 1.054 | 1 | −0.965 | 0.336 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.94 | 0.049 | 165 | 0.848 | 1.042 | 1 | −1.191 | 0.236 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.94 | 0.049 | 165 | 0.848 | 1.042 | 1 | −1.191 | 0.236 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Temporal plot: