23 Myelin Binding Protein
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Length_Fil |
Length of myelinated fibers (10^(-4) μm) |
Area_Fil |
Area of myelinated fibers (10^(-4) μm^(2)) |
Vol_Fil |
Volume of myelinated fibers (10^(-4) μm^(3)) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Length_Fil |
Length of myelinated fibers (10^(-4) μm) |
Area_Fil |
Area of myelinated fibers (10^(-4) μm^(2)) |
Vol_Fil |
Volume of myelinated fibers (10^(-4) μm^(3)) |
❖ Correlations
23.1 Length of myelinated fibers
23.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.267 | 0.465 | 0.216 | 0.367 | 0.498 | 0.523 | 3.34 | 1.77 | 5.327 | 120 |
IH | 1.387 | 0.554 | 0.306 | 0.399 | 0.861 | 0.521 | 3.149 | 0.675 | 0.347 | 120 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.267 | 0.465 | 0.216 | 0.367 | 0.498 | 0.523 | 3.34 | 1.77 | 5.327 | 120 |
IH | 1.387 | 0.554 | 0.306 | 0.399 | 0.861 | 0.521 | 3.149 | 0.675 | 0.347 | 120 |
23.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Length_Fil ~ Condition + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
331.95 | 332.12 | 345.87 | 0.03 | 0.01 | 0.01 | 0.51 | 0.37 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
331.95 | 332.12 | 345.87 | 0.03 | 0.01 | 0.01 | 0.51 | 0.37 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Length_Fil ~ Condition + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
374.57 | 374.74 | 388.50 | 0.01 | 7.63e-03 | 3.81e-03 | 0.51 | 0.51 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
374.57 | 374.74 | 388.50 | 0.01 | 7.63e-03 | 3.81e-03 | 0.51 | 0.51 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
23.1.3 Effects Analysis
23.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.266 | 0.050 | (1.17, 1.37) | 5.919 | < .001 |
Condition2 | 1.094 | 0.062 | (0.98, 1.22) | 1.599 | 0.110 |
Model: Length_Fil ~ Condition (240 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.266 | 0.050 | (1.17, 1.37) | 5.919 | < .001 |
Condition2 | 1.094 | 0.062 | (0.98, 1.22) | 1.599 | 0.110 |
Model: Length_Fil ~ Condition (240 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.56 | 1 | 0.110 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 2.56 | 1 | 0.110 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 323.27 | 333.71 | -158.64 | 317.27 | |||
mod_full | 4 | 322.43 | 336.36 | -157.22 | 314.43 | 2.84 | 1 | 0.090 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 323.27 | 333.71 | -158.64 | 317.27 | |||
mod_full | 4 | 322.43 | 336.36 | -157.22 | 314.43 | 2.84 | 1 | 0.090 |
23.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.266 | 0.05 | 238 | 1.171 | 1.37 |
IH | 1.386 | 0.055 | 238 | 1.281 | 1.499 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.266 | 0.05 | 238 | 1.171 | 1.37 |
IH | 1.386 | 0.055 | 238 | 1.281 | 1.499 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.914 | 0.052 | 238 | 0.818 | 1.021 | 1 | −1.599 | 0.111 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.914 | 0.052 | 238 | 0.818 | 1.021 | 1 | −1.599 | 0.111 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
23.2 Area of myelinated fibers
23.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.753 | 1.283 | 1.645 | 0.342 | 1.427 | 1.5 | 9.336 | 1.29 | 3.096 | 120 |
IH | 3.565 | 1.457 | 2.124 | 0.409 | 1.909 | 1.109 | 8.737 | 0.914 | 1.553 | 120 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.753 | 1.283 | 1.645 | 0.342 | 1.427 | 1.5 | 9.336 | 1.29 | 3.096 | 120 |
IH | 3.565 | 1.457 | 2.124 | 0.409 | 1.909 | 1.109 | 8.737 | 0.914 | 1.553 | 120 |
23.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Area_Fil ~ Condition + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
816.50 | 816.67 | 830.42 | 0.02 | 5.60e-03 | 0.02 | 1.35 | 0.37 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
816.50 | 816.67 | 830.42 | 0.02 | 5.60e-03 | 0.02 | 1.35 | 0.37 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Area_Fil ~ Condition + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
848.63 | 848.80 | 862.55 | 1.34e-03 | 3.88e-04 | 9.51e-04 | 1.36 | 1.37 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
848.63 | 848.80 | 862.55 | 1.34e-03 | 3.88e-04 | 9.51e-04 | 1.36 | 1.37 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
23.2.3 Effects Analysis
23.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 3.753 | 0.153 | (3.46, 4.06) | 32.474 | < .001 |
Condition2 | 0.946 | 0.055 | (0.84, 1.06) | -0.954 | 0.340 |
Model: Area_Fil ~ Condition (240 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 3.753 | 0.153 | (3.46, 4.06) | 32.474 | < .001 |
Condition2 | 0.946 | 0.055 | (0.84, 1.06) | -0.954 | 0.340 |
Model: Area_Fil ~ Condition (240 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.91 | 1 | 0.340 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.91 | 1 | 0.340 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 806.14 | 816.59 | -400.07 | 800.14 | |||
mod_full | 4 | 807.05 | 820.97 | -399.52 | 799.05 | 1.09 | 1 | 0.300 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 806.14 | 816.59 | -400.07 | 800.14 | |||
mod_full | 4 | 807.05 | 820.97 | -399.52 | 799.05 | 1.09 | 1 | 0.300 |
23.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.753 | 0.153 | 238 | 3.463 | 4.066 |
IH | 3.551 | 0.146 | 238 | 3.275 | 3.851 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.753 | 0.153 | 238 | 3.463 | 4.066 |
IH | 3.551 | 0.146 | 238 | 3.275 | 3.851 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.057 | 0.061 | 238 | 0.943 | 1.184 | 1 | 0.954 | 0.341 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.057 | 0.061 | 238 | 0.943 | 1.184 | 1 | 0.954 | 0.341 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
23.3 Volume of myelinated fibers
23.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.053 | 0.394 | 0.155 | 0.374 | 0.508 | 0.387 | 3.004 | 1.403 | 4.206 | 120 |
IH | 0.858 | 0.398 | 0.159 | 0.464 | 0.457 | 0.21 | 2.425 | 1.215 | 2.503 | 120 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.053 | 0.394 | 0.155 | 0.374 | 0.508 | 0.387 | 3.004 | 1.403 | 4.206 | 120 |
IH | 0.858 | 0.398 | 0.159 | 0.464 | 0.457 | 0.21 | 2.425 | 1.215 | 2.503 | 120 |
23.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Vol_Fil ~ Condition + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
208.52 | 208.69 | 222.44 | 0.12 | 0.07 | 0.06 | 0.39 | 0.40 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
208.52 | 208.69 | 222.44 | 0.12 | 0.07 | 0.06 | 0.39 | 0.40 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Vol_Fil ~ Condition + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
250.64 | 250.81 | 264.56 | 0.10 | 0.06 | 0.04 | 0.39 | 0.39 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
250.64 | 250.81 | 264.56 | 0.10 | 0.06 | 0.04 | 0.39 | 0.39 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
23.3.3 Effects Analysis
23.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.053 | 0.065 | (0.93, 1.19) | 0.837 | 0.402 |
Condition2 | 0.801 | 0.070 | (0.67, 0.95) | -2.529 | 0.011 * |
Model: Vol_Fil ~ Condition (240 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.053 | 0.065 | (0.93, 1.19) | 0.837 | 0.402 |
Condition2 | 0.801 | 0.070 | (0.67, 0.95) | -2.529 | 0.011 * |
Model: Vol_Fil ~ Condition (240 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 6.40 | 1 | 0.010 ** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 6.40 | 1 | 0.010 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 204.68 | 215.12 | -99.34 | 198.68 | |||
mod_full | 4 | 200.74 | 214.66 | -96.37 | 192.74 | 5.94 | 1 | 0.010 ** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 3 | 204.68 | 215.12 | -99.34 | 198.68 | |||
mod_full | 4 | 200.74 | 214.66 | -96.37 | 192.74 | 5.94 | 1 | 0.010 ** |
23.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.053 | 0.065 | 238 | 0.932 | 1.19 |
IH | 0.843 | 0.053 | 238 | 0.746 | 0.953 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.053 | 0.065 | 238 | 0.932 | 1.19 |
IH | 0.843 | 0.053 | 238 | 0.746 | 0.953 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.249 | 0.11 | 238 | 1.05 | 1.485 | 1 | 2.529 | 0.012 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.249 | 0.11 | 238 | 1.05 | 1.485 | 1 | 2.529 | 0.012 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: