22 Gluδ2 Parallel Fibers
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_DD |
Purkinje dendrite area (10^(-4) μm^(2)) |
A_DD_per_cell |
Purkinje dendrite area (10^(-4) μm^(2)) per Purkinje cell |
A_GLUD2 |
Gluδ2-labelled Parallel fiber area in the ML (10^(-5) μm^(2)) |
Vol_GLUD2 |
Gluδ2-labelled Parallel fiber volume in the ML (10^(-5) μm^(3)) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_DD |
Purkinje dendrite area (10^(-4) μm^(2)) |
A_DD_per_cell |
Purkinje dendrite area (10^(-4) μm^(2)) per Purkinje cell |
A_GLUD2 |
Gluδ2-labelled Parallel fiber area in the ML (10^(-5) μm^(2)) |
Vol_GLUD2 |
Gluδ2-labelled Parallel fiber volume in the ML (10^(-5) μm^(3)) |
❖ Correlations
22.1 Purkinje Dendrite Area (per cell)
22.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.933 | 0.266 | 0.071 | 0.286 | 0.362 | 0.502 | 1.54 | 0.299 | −0.502 | 30 |
IH | 0.857 | 0.199 | 0.04 | 0.232 | 0.353 | 0.31 | 1.16 | −0.679 | 0.377 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.933 | 0.266 | 0.071 | 0.286 | 0.362 | 0.502 | 1.54 | 0.299 | −0.502 | 30 |
IH | 0.857 | 0.199 | 0.04 | 0.232 | 0.353 | 0.31 | 1.16 | −0.679 | 0.377 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.858 | 0.27 | 0.073 | 0.315 | 0.302 | 0.53 | 1.92 | 2.094 | 7.745 | 29 |
IH | 0.958 | 0.258 | 0.067 | 0.269 | 0.382 | 0.412 | 1.643 | 0.267 | 0.586 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.858 | 0.27 | 0.073 | 0.315 | 0.302 | 0.53 | 1.92 | 2.094 | 7.745 | 29 |
IH | 0.958 | 0.258 | 0.067 | 0.269 | 0.382 | 0.412 | 1.643 | 0.267 | 0.586 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.993 | 0.391 | 0.153 | 0.394 | 0.518 | 0.513 | 2.062 | 1.251 | 1.525 | 24 |
IH | 1.064 | 0.51 | 0.26 | 0.479 | 0.502 | 0.475 | 3.1 | 2.605 | 9.381 | 27 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.993 | 0.391 | 0.153 | 0.394 | 0.518 | 0.513 | 2.062 | 1.251 | 1.525 | 24 |
IH | 1.064 | 0.51 | 0.26 | 0.479 | 0.502 | 0.475 | 3.1 | 2.605 | 9.381 | 27 |
22.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_DD_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
93.22 | 94.13 | 118.21 | 0.13 | 0.06 | 0.08 | 0.31 | 0.31 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
93.22 | 94.13 | 118.21 | 0.13 | 0.06 | 0.08 | 0.31 | 0.31 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = A_DD_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
137.15 | 138.05 | 162.14 | 0.14 | 0.06 | 0.09 | 0.31 | 0.32 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
137.15 | 138.05 | 162.14 | 0.14 | 0.06 | 0.09 | 0.31 | 0.32 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
22.1.3 Effects Analysis
22.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.937 | 0.041 | (0.86, 1.02) | -1.497 | 0.134 |
Condition1 | 0.982 | 0.043 | (0.90, 1.07) | -0.421 | 0.674 |
Z1 | 0.955 | 0.032 | (0.89, 1.02) | -1.393 | 0.164 |
Z2 | 0.967 | 0.032 | (0.91, 1.03) | -0.991 | 0.322 |
Condition1 * Z1 | 1.071 | 0.036 | (1.00, 1.14) | 2.043 | 0.041 * |
Condition1 * Z2 | 0.954 | 0.032 | (0.89, 1.02) | -1.400 | 0.162 |
Model: A_DD_per_cell ~ Condition * Z (168 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.937 | 0.041 | (0.86, 1.02) | -1.497 | 0.134 |
Condition1 | 0.982 | 0.043 | (0.90, 1.07) | -0.421 | 0.674 |
Z1 | 0.955 | 0.032 | (0.89, 1.02) | -1.393 | 0.164 |
Z2 | 0.967 | 0.032 | (0.91, 1.03) | -0.991 | 0.322 |
Condition1 * Z1 | 1.071 | 0.036 | (1.00, 1.14) | 2.043 | 0.041 * |
Condition1 * Z2 | 0.954 | 0.032 | (0.89, 1.02) | -1.400 | 0.162 |
Model: A_DD_per_cell ~ Condition * Z (168 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.18 | 1 | 0.670 |
Z | 5.31 | 2 | 0.070 |
Condition:Z | 4.43 | 2 | 0.110 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.18 | 1 | 0.670 |
Z | 5.31 | 2 | 0.070 |
Condition:Z | 4.43 | 2 | 0.110 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 61.92 | 77.54 | -25.96 | 51.92 | |||
mod_full | 8 | 63.51 | 88.50 | -23.75 | 47.51 | 4.41 | 3 | 0.220 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 61.92 | 77.54 | -25.96 | 51.92 | |||
mod_full | 8 | 63.51 | 88.50 | -23.75 | 47.51 | 4.41 | 3 | 0.220 |
22.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.92 | 0.057 | 166 | 0.815 | 1.039 |
IH | 0.955 | 0.058 | 166 | 0.846 | 1.077 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.92 | 0.057 | 166 | 0.815 | 1.039 |
IH | 0.955 | 0.058 | 166 | 0.846 | 1.077 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.964 | 0.083 | 166 | 0.813 | 1.144 | 1 | −0.421 | 0.674 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.964 | 0.083 | 166 | 0.813 | 1.144 | 1 | −0.421 | 0.674 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.895 | 0.048 | 166 | 0.804 | 0.995 |
Med | 0.907 | 0.049 | 166 | 0.815 | 1.009 |
Post | 1.015 | 0.057 | 166 | 0.908 | 1.135 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.895 | 0.048 | 166 | 0.804 | 0.995 |
Med | 0.907 | 0.049 | 166 | 0.815 | 1.009 |
Post | 1.015 | 0.057 | 166 | 0.908 | 1.135 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.987 | 0.056 | 166 | 0.882 | 1.105 | 1 | −0.233 | 0.816 |
Ant / Post | 0.882 | 0.052 | 166 | 0.784 | 0.991 | 1 | −2.126 | 0.035 * |
Med / Post | 0.893 | 0.053 | 166 | 0.794 | 1.005 | 1 | −1.895 | 0.060 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.987 | 0.056 | 166 | 0.882 | 1.105 | 1 | −0.233 | 0.816 |
Ant / Post | 0.882 | 0.052 | 166 | 0.784 | 0.991 | 1 | −2.126 | 0.035 * |
Med / Post | 0.893 | 0.053 | 166 | 0.794 | 1.005 | 1 | −1.895 | 0.060 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.941 | 0.072 | 166 | 0.81 | 1.093 |
IH | 0.851 | 0.065 | 166 | 0.731 | 0.99 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.941 | 0.072 | 166 | 0.81 | 1.093 |
IH | 0.851 | 0.065 | 166 | 0.731 | 0.99 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.849 | 0.065 | 166 | 0.73 | 0.988 |
IH | 0.968 | 0.074 | 166 | 0.831 | 1.126 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.849 | 0.065 | 166 | 0.73 | 0.988 |
IH | 0.968 | 0.074 | 166 | 0.831 | 1.126 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.975 | 0.079 | 166 | 0.831 | 1.145 |
IH | 1.056 | 0.083 | 166 | 0.904 | 1.233 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.975 | 0.079 | 166 | 0.831 | 1.145 |
IH | 1.056 | 0.083 | 166 | 0.904 | 1.233 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.105 | 0.12 | 166 | 0.893 | 1.369 | 1 | 0.927 | 0.355 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.105 | 0.12 | 166 | 0.893 | 1.369 | 1 | 0.927 | 0.355 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.878 | 0.095 | 166 | 0.708 | 1.088 | 1 | −1.199 | 0.232 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.878 | 0.095 | 166 | 0.708 | 1.088 | 1 | −1.199 | 0.232 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.924 | 0.104 | 166 | 0.739 | 1.155 | 1 | −0.702 | 0.484 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.924 | 0.104 | 166 | 0.739 | 1.155 | 1 | −0.702 | 0.484 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.259 | 0.144 | 166 | 1.004 | 1.579 | 1 | 2.011 | 0.046 * |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.259 | 0.144 | 166 | 1.004 | 1.579 | 1 | 2.011 | 0.046 * |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.197 | 0.142 | 166 | 0.947 | 1.512 | 1 | 1.514 | 0.132 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.197 | 0.142 | 166 | 0.947 | 1.512 | 1 | 1.514 | 0.132 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.95 | 0.113 | 166 | 0.751 | 1.201 | 1 | −0.43 | 0.668 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.95 | 0.113 | 166 | 0.751 | 1.201 | 1 | −0.43 | 0.668 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
22.2 Gluδ2-labelled Parallel fiber Area in the ML
22.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.979 | 0.531 | 0.282 | 0.268 | 0.84 | 1.09 | 3.24 | 0.425 | −0.348 | 30 |
IH | 1.811 | 0.52 | 0.27 | 0.287 | 0.815 | 0.621 | 2.92 | −0.191 | −0.183 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.979 | 0.531 | 0.282 | 0.268 | 0.84 | 1.09 | 3.24 | 0.425 | −0.348 | 30 |
IH | 1.811 | 0.52 | 0.27 | 0.287 | 0.815 | 0.621 | 2.92 | −0.191 | −0.183 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.019 | 0.508 | 0.258 | 0.252 | 0.775 | 0.98 | 3.11 | −0.061 | −0.113 | 29 |
IH | 1.942 | 0.464 | 0.215 | 0.239 | 0.695 | 1.05 | 2.83 | 0.047 | −0.665 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.019 | 0.508 | 0.258 | 0.252 | 0.775 | 0.98 | 3.11 | −0.061 | −0.113 | 29 |
IH | 1.942 | 0.464 | 0.215 | 0.239 | 0.695 | 1.05 | 2.83 | 0.047 | −0.665 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.201 | 0.59 | 0.348 | 0.268 | 0.745 | 0.991 | 3.41 | −0.229 | −0.118 | 24 |
IH | 1.844 | 0.509 | 0.259 | 0.276 | 0.44 | 0.941 | 3.25 | 0.538 | 1.11 | 27 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.201 | 0.59 | 0.348 | 0.268 | 0.745 | 0.991 | 3.41 | −0.229 | −0.118 | 24 |
IH | 1.844 | 0.509 | 0.259 | 0.276 | 0.44 | 0.941 | 3.25 | 0.538 | 1.11 | 27 |
22.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_GLUD2 ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
293.41 | 294.32 | 318.40 | 0.19 | 0.06 | 0.14 | 0.48 | 0.26 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
293.41 | 294.32 | 318.40 | 0.19 | 0.06 | 0.14 | 0.48 | 0.26 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = A_GLUD2 ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
290.19 | 291.10 | 315.18 | 0.06 | 0.02 | 0.04 | 0.48 | 0.49 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
290.19 | 291.10 | 315.18 | 0.06 | 0.02 | 0.04 | 0.48 | 0.49 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
22.2.3 Effects Analysis
22.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.957 | 0.094 | (1.78, 2.15) | 14.015 | < .001 |
Condition1 | 1.054 | 0.051 | (0.96, 1.16) | 1.107 | 0.268 |
Z1 | 0.949 | 0.027 | (0.90, 1.00) | -1.801 | 0.072 |
Z2 | 1.008 | 0.029 | (0.95, 1.07) | 0.296 | 0.767 |
Condition1 * Z1 | 1.001 | 0.029 | (0.95, 1.06) | 0.048 | 0.961 |
Condition1 * Z2 | 0.968 | 0.028 | (0.92, 1.02) | -1.154 | 0.248 |
Model: A_GLUD2 ~ Condition * Z (168 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.957 | 0.094 | (1.78, 2.15) | 14.015 | < .001 |
Condition1 | 1.054 | 0.051 | (0.96, 1.16) | 1.107 | 0.268 |
Z1 | 0.949 | 0.027 | (0.90, 1.00) | -1.801 | 0.072 |
Z2 | 1.008 | 0.029 | (0.95, 1.07) | 0.296 | 0.767 |
Condition1 * Z1 | 1.001 | 0.029 | (0.95, 1.06) | 0.048 | 0.961 |
Condition1 * Z2 | 0.968 | 0.028 | (0.92, 1.02) | -1.154 | 0.248 |
Model: A_GLUD2 ~ Condition * Z (168 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.23 | 1 | 0.270 |
Z | 3.61 | 2 | 0.160 |
Condition:Z | 1.64 | 2 | 0.440 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.23 | 1 | 0.270 |
Z | 3.61 | 2 | 0.160 |
Condition:Z | 1.64 | 2 | 0.440 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 260.08 | 275.70 | -125.04 | 250.08 | |||
mod_full | 8 | 262.86 | 287.85 | -123.43 | 246.86 | 3.22 | 3 | 0.360 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 260.08 | 275.70 | -125.04 | 250.08 | |||
mod_full | 8 | 262.86 | 287.85 | -123.43 | 246.86 | 3.22 | 3 | 0.360 |
22.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.063 | 0.14 | 166 | 1.805 | 2.359 |
IH | 1.856 | 0.126 | 166 | 1.624 | 2.121 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.063 | 0.14 | 166 | 1.805 | 2.359 |
IH | 1.856 | 0.126 | 166 | 1.624 | 2.121 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.112 | 0.107 | 166 | 0.92 | 1.343 | 1 | 1.107 | 0.270 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.112 | 0.107 | 166 | 0.92 | 1.343 | 1 | 1.107 | 0.270 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.858 | 0.103 | 166 | 1.665 | 2.073 |
Med | 1.973 | 0.109 | 166 | 1.769 | 2.201 |
Post | 2.043 | 0.117 | 166 | 1.826 | 2.287 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.858 | 0.103 | 166 | 1.665 | 2.073 |
Med | 1.973 | 0.109 | 166 | 1.769 | 2.201 |
Post | 2.043 | 0.117 | 166 | 1.826 | 2.287 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.942 | 0.046 | 166 | 0.855 | 1.037 | 1 | −1.23 | 0.220 |
Ant / Post | 0.909 | 0.046 | 166 | 0.822 | 1.006 | 1 | −1.865 | 0.064 |
Med / Post | 0.966 | 0.049 | 166 | 0.874 | 1.067 | 1 | −0.692 | 0.490 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 0.942 | 0.046 | 166 | 0.855 | 1.037 | 1 | −1.23 | 0.220 |
Ant / Post | 0.909 | 0.046 | 166 | 0.822 | 1.006 | 1 | −1.865 | 0.064 |
Med / Post | 0.966 | 0.049 | 166 | 0.874 | 1.067 | 1 | −0.692 | 0.490 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.962 | 0.153 | 166 | 1.682 | 2.288 |
IH | 1.759 | 0.139 | 166 | 1.506 | 2.056 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.962 | 0.153 | 166 | 1.682 | 2.288 |
IH | 1.759 | 0.139 | 166 | 1.506 | 2.056 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.013 | 0.158 | 166 | 1.725 | 2.35 |
IH | 1.934 | 0.152 | 166 | 1.656 | 2.258 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.013 | 0.158 | 166 | 1.725 | 2.35 |
IH | 1.934 | 0.152 | 166 | 1.656 | 2.258 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.224 | 0.181 | 166 | 1.893 | 2.612 |
IH | 1.878 | 0.15 | 166 | 1.604 | 2.198 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.224 | 0.181 | 166 | 1.893 | 2.612 |
IH | 1.878 | 0.15 | 166 | 1.604 | 2.198 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.115 | 0.124 | 166 | 0.896 | 1.388 | 1 | 0.982 | 0.328 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.115 | 0.124 | 166 | 0.896 | 1.388 | 1 | 0.982 | 0.328 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.041 | 0.115 | 166 | 0.836 | 1.296 | 1 | 0.363 | 0.717 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.041 | 0.115 | 166 | 0.836 | 1.296 | 1 | 0.363 | 0.717 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.184 | 0.135 | 166 | 0.945 | 1.483 | 1 | 1.483 | 0.140 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.184 | 0.135 | 166 | 0.945 | 1.483 | 1 | 1.483 | 0.140 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.071 | 0.105 | 166 | 0.883 | 1.299 | 1 | 0.7 | 0.485 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.071 | 0.105 | 166 | 0.883 | 1.299 | 1 | 0.7 | 0.485 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.942 | 0.096 | 166 | 0.77 | 1.151 | 1 | −0.592 | 0.555 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.942 | 0.096 | 166 | 0.77 | 1.151 | 1 | −0.592 | 0.555 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.879 | 0.089 | 166 | 0.72 | 1.073 | 1 | −1.275 | 0.204 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.879 | 0.089 | 166 | 0.72 | 1.073 | 1 | −1.275 | 0.204 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
22.3 Gluδ2-labelled Parallel fiber Volume in the ML
22.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.083 | 0.28 | 0.079 | 0.135 | 0.39 | 1.4 | 2.81 | 0.187 | 0.957 | 30 |
IH | 2.077 | 0.466 | 0.218 | 0.225 | 0.55 | 0.27 | 2.64 | −2.125 | 7.201 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.083 | 0.28 | 0.079 | 0.135 | 0.39 | 1.4 | 2.81 | 0.187 | 0.957 | 30 |
IH | 2.077 | 0.466 | 0.218 | 0.225 | 0.55 | 0.27 | 2.64 | −2.125 | 7.201 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.944 | 0.317 | 0.1 | 0.163 | 0.545 | 1.36 | 2.43 | −0.077 | −1.138 | 29 |
IH | 2.133 | 0.335 | 0.112 | 0.157 | 0.605 | 1.53 | 2.61 | −0.476 | −1.122 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.944 | 0.317 | 0.1 | 0.163 | 0.545 | 1.36 | 2.43 | −0.077 | −1.138 | 29 |
IH | 2.133 | 0.335 | 0.112 | 0.157 | 0.605 | 1.53 | 2.61 | −0.476 | −1.122 | 29 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.094 | 0.409 | 0.167 | 0.195 | 0.525 | 0.963 | 2.9 | −0.622 | 1.505 | 24 |
IH | 1.983 | 0.332 | 0.11 | 0.168 | 0.51 | 1.34 | 2.59 | −0.12 | −0.717 | 27 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.094 | 0.409 | 0.167 | 0.195 | 0.525 | 0.963 | 2.9 | −0.622 | 1.505 | 24 |
IH | 1.983 | 0.332 | 0.11 | 0.168 | 0.51 | 1.34 | 2.59 | −0.12 | −0.717 | 27 |
22.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Vol_GLUD2 ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
227.08 | 227.98 | 252.07 | 0.03 | 0.03 | 1.94e-03 | 0.35 | 0.20 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
227.08 | 227.98 | 252.07 | 0.03 | 0.03 | 1.94e-03 | 0.35 | 0.20 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Vol_GLUD2 ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
181.96 | 182.87 | 206.95 | 0.01 | 8.27e-03 | 2.77e-03 | 0.35 | 0.36 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
181.96 | 182.87 | 206.95 | 0.01 | 8.27e-03 | 2.77e-03 | 0.35 | 0.36 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
22.3.3 Effects Analysis
22.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.051 | 0.033 | (1.99, 2.12) | 44.091 | < .001 |
Condition1 | 0.994 | 0.016 | (0.96, 1.03) | -0.360 | 0.719 |
Z1 | 1.014 | 0.023 | (0.97, 1.06) | 0.634 | 0.526 |
Z2 | 0.993 | 0.022 | (0.95, 1.04) | -0.324 | 0.746 |
Condition1 * Z1 | 1.007 | 0.022 | (0.96, 1.05) | 0.329 | 0.742 |
Condition1 * Z2 | 0.960 | 0.021 | (0.92, 1.00) | -1.822 | 0.068 |
Model: Vol_GLUD2 ~ Condition * Z (168 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.051 | 0.033 | (1.99, 2.12) | 44.091 | < .001 |
Condition1 | 0.994 | 0.016 | (0.96, 1.03) | -0.360 | 0.719 |
Z1 | 1.014 | 0.023 | (0.97, 1.06) | 0.634 | 0.526 |
Z2 | 0.993 | 0.022 | (0.95, 1.04) | -0.324 | 0.746 |
Condition1 * Z1 | 1.007 | 0.022 | (0.96, 1.05) | 0.329 | 0.742 |
Condition1 * Z2 | 0.960 | 0.021 | (0.92, 1.00) | -1.822 | 0.068 |
Model: Vol_GLUD2 ~ Condition * Z (168 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.13 | 1 | 0.720 |
Z | 0.40 | 2 | 0.820 |
Condition:Z | 3.66 | 2 | 0.160 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.13 | 1 | 0.720 |
Z | 0.40 | 2 | 0.820 |
Condition:Z | 3.66 | 2 | 0.160 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 188.39 | 204.01 | -89.20 | 178.39 | |||
mod_full | 8 | 190.43 | 215.42 | -87.22 | 174.43 | 3.96 | 3 | 0.270 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 188.39 | 204.01 | -89.20 | 178.39 | |||
mod_full | 8 | 190.43 | 215.42 | -87.22 | 174.43 | 3.96 | 3 | 0.270 |
22.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.039 | 0.047 | 166 | 1.948 | 2.135 |
IH | 2.063 | 0.047 | 166 | 1.972 | 2.158 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.039 | 0.047 | 166 | 1.948 | 2.135 |
IH | 2.063 | 0.047 | 166 | 1.972 | 2.158 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.988 | 0.032 | 166 | 0.927 | 1.054 | 1 | −0.36 | 0.719 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.988 | 0.032 | 166 | 0.927 | 1.054 | 1 | −0.36 | 0.719 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 2.08 | 0.056 | 166 | 1.972 | 2.194 |
Med | 2.036 | 0.055 | 166 | 1.93 | 2.148 |
Post | 2.037 | 0.06 | 166 | 1.922 | 2.158 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 2.08 | 0.056 | 166 | 1.972 | 2.194 |
Med | 2.036 | 0.055 | 166 | 1.93 | 2.148 |
Post | 2.037 | 0.06 | 166 | 1.922 | 2.158 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.022 | 0.039 | 166 | 0.948 | 1.101 | 1 | 0.563 | 0.575 |
Ant / Post | 1.021 | 0.041 | 166 | 0.944 | 1.105 | 1 | 0.531 | 0.596 |
Med / Post | 1 | 0.04 | 166 | 0.925 | 1.081 | 1 | −0.005 | 0.996 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.022 | 0.039 | 166 | 0.948 | 1.101 | 1 | 0.563 | 0.575 |
Ant / Post | 1.021 | 0.041 | 166 | 0.944 | 1.105 | 1 | 0.531 | 0.596 |
Med / Post | 1 | 0.04 | 166 | 0.925 | 1.081 | 1 | −0.005 | 0.996 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.083 | 0.079 | 166 | 1.934 | 2.244 |
IH | 2.077 | 0.08 | 166 | 1.925 | 2.241 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.083 | 0.079 | 166 | 1.934 | 2.244 |
IH | 2.077 | 0.08 | 166 | 1.925 | 2.241 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.944 | 0.075 | 166 | 1.803 | 2.097 |
IH | 2.133 | 0.082 | 166 | 1.977 | 2.3 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.944 | 0.075 | 166 | 1.803 | 2.097 |
IH | 2.133 | 0.082 | 166 | 1.977 | 2.3 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.093 | 0.089 | 166 | 1.925 | 2.276 |
IH | 1.982 | 0.079 | 166 | 1.831 | 2.145 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.093 | 0.089 | 166 | 1.925 | 2.276 |
IH | 1.982 | 0.079 | 166 | 1.831 | 2.145 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.003 | 0.054 | 166 | 0.902 | 1.115 | 1 | 0.052 | 0.958 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.003 | 0.054 | 166 | 0.902 | 1.115 | 1 | 0.052 | 0.958 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.912 | 0.049 | 166 | 0.819 | 1.015 | 1 | −1.705 | 0.090 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.912 | 0.049 | 166 | 0.819 | 1.015 | 1 | −1.705 | 0.090 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.056 | 0.061 | 166 | 0.942 | 1.184 | 1 | 0.942 | 0.348 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.056 | 0.061 | 166 | 0.942 | 1.184 | 1 | 0.942 | 0.348 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.1 | 0.083 | 166 | 0.947 | 1.277 | 1 | 1.259 | 0.210 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.1 | 0.083 | 166 | 0.947 | 1.277 | 1 | 1.259 | 0.210 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.95 | 0.074 | 166 | 0.814 | 1.108 | 1 | −0.66 | 0.510 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.95 | 0.074 | 166 | 0.814 | 1.108 | 1 | −0.66 | 0.510 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.863 | 0.068 | 166 | 0.739 | 1.008 | 1 | −1.87 | 0.063 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.863 | 0.068 | 166 | 0.739 | 1.008 | 1 | −1.87 | 0.063 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: