22  Gluδ2 Parallel Fibers

Data

Description

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

A_DD

Purkinje dendrite area (10^(-4) μm^(2))

A_DD_per_cell

Purkinje dendrite area (10^(-4) μm^(2)) per Purkinje cell

A_GLUD2

Gluδ2-labelled Parallel fiber area in the ML (10^(-5) μm^(2))

Vol_GLUD2

Gluδ2-labelled Parallel fiber volume in the ML (10^(-5) μm^(3))

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

A_DD

Purkinje dendrite area (10^(-4) μm^(2))

A_DD_per_cell

Purkinje dendrite area (10^(-4) μm^(2)) per Purkinje cell

A_GLUD2

Gluδ2-labelled Parallel fiber area in the ML (10^(-5) μm^(2))

Vol_GLUD2

Gluδ2-labelled Parallel fiber volume in the ML (10^(-5) μm^(3))

Correlations

22.1 Purkinje Dendrite Area (per cell)

22.1.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.933 0.266 0.071 0.286 0.362 0.502 1.54 0.299 −0.502 30
IH 0.857 0.199 0.04 0.232 0.353 0.31 1.16 −0.679 0.377 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.933 0.266 0.071 0.286 0.362 0.502 1.54 0.299 −0.502 30
IH 0.857 0.199 0.04 0.232 0.353 0.31 1.16 −0.679 0.377 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.858 0.27 0.073 0.315 0.302 0.53 1.92 2.094 7.745 29
IH 0.958 0.258 0.067 0.269 0.382 0.412 1.643 0.267 0.586 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.858 0.27 0.073 0.315 0.302 0.53 1.92 2.094 7.745 29
IH 0.958 0.258 0.067 0.269 0.382 0.412 1.643 0.267 0.586 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.993 0.391 0.153 0.394 0.518 0.513 2.062 1.251 1.525 24
IH 1.064 0.51 0.26 0.479 0.502 0.475 3.1 2.605 9.381 27
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.993 0.391 0.153 0.394 0.518 0.513 2.062 1.251 1.525 24
IH 1.064 0.51 0.26 0.479 0.502 0.475 3.1 2.605 9.381 27

22.1.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_DD_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
93.22 94.13 118.21 0.13 0.06 0.08 0.31 0.31
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
93.22 94.13 118.21 0.13 0.06 0.08 0.31 0.31

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_DD_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
137.15 138.05 162.14 0.14 0.06 0.09 0.31 0.32
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
137.15 138.05 162.14 0.14 0.06 0.09 0.31 0.32

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

22.1.3 Effects Analysis

```{r}
glmmTMB(formula = A_DD_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

22.1.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.937 0.041 (0.86, 1.02) -1.497 0.134
Condition1 0.982 0.043 (0.90, 1.07) -0.421 0.674
Z1 0.955 0.032 (0.89, 1.02) -1.393 0.164
Z2 0.967 0.032 (0.91, 1.03) -0.991 0.322
Condition1 * Z1 1.071 0.036 (1.00, 1.14) 2.043 0.041 *
Condition1 * Z2 0.954 0.032 (0.89, 1.02) -1.400 0.162
Model: A_DD_per_cell ~ Condition * Z (168 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.937 0.041 (0.86, 1.02) -1.497 0.134
Condition1 0.982 0.043 (0.90, 1.07) -0.421 0.674
Z1 0.955 0.032 (0.89, 1.02) -1.393 0.164
Z2 0.967 0.032 (0.91, 1.03) -0.991 0.322
Condition1 * Z1 1.071 0.036 (1.00, 1.14) 2.043 0.041 *
Condition1 * Z2 0.954 0.032 (0.89, 1.02) -1.400 0.162
Model: A_DD_per_cell ~ Condition * Z (168 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.18 1 0.670
Z 5.31 2 0.070
Condition:Z 4.43 2 0.110
term statistic df p.value
Condition 0.18 1 0.670
Z 5.31 2 0.070
Condition:Z 4.43 2 0.110

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 61.92 77.54 -25.96 51.92
mod_full 8 63.51 88.50 -23.75 47.51 4.41 3 0.220
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 61.92 77.54 -25.96 51.92
mod_full 8 63.51 88.50 -23.75 47.51 4.41 3 0.220
Important

Our LRT() method removes the predictor plus all its interactions

22.1.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 0.92 0.057 166 0.815 1.039
IH 0.955 0.058 166 0.846 1.077
Condition response SE df lower.CL upper.CL
N 0.92 0.057 166 0.815 1.039
IH 0.955 0.058 166 0.846 1.077
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.964 0.083 166 0.813 1.144 1 −0.421 0.674
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.964 0.083 166 0.813 1.144 1 −0.421 0.674
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 0.895 0.048 166 0.804 0.995
Med 0.907 0.049 166 0.815 1.009
Post 1.015 0.057 166 0.908 1.135
Z response SE df lower.CL upper.CL
Ant 0.895 0.048 166 0.804 0.995
Med 0.907 0.049 166 0.815 1.009
Post 1.015 0.057 166 0.908 1.135
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.987 0.056 166 0.882 1.105 1 −0.233 0.816
Ant / Post 0.882 0.052 166 0.784 0.991 1 −2.126 0.035 *
Med / Post 0.893 0.053 166 0.794 1.005 1 −1.895 0.060
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.987 0.056 166 0.882 1.105 1 −0.233 0.816
Ant / Post 0.882 0.052 166 0.784 0.991 1 −2.126 0.035 *
Med / Post 0.893 0.053 166 0.794 1.005 1 −1.895 0.060
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 0.941 0.072 166 0.81 1.093
IH 0.851 0.065 166 0.731 0.99
Condition response SE df lower.CL upper.CL
N 0.941 0.072 166 0.81 1.093
IH 0.851 0.065 166 0.731 0.99
Condition response SE df lower.CL upper.CL
N 0.849 0.065 166 0.73 0.988
IH 0.968 0.074 166 0.831 1.126
Condition response SE df lower.CL upper.CL
N 0.849 0.065 166 0.73 0.988
IH 0.968 0.074 166 0.831 1.126
Condition response SE df lower.CL upper.CL
N 0.975 0.079 166 0.831 1.145
IH 1.056 0.083 166 0.904 1.233
Condition response SE df lower.CL upper.CL
N 0.975 0.079 166 0.831 1.145
IH 1.056 0.083 166 0.904 1.233
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.105 0.12 166 0.893 1.369 1 0.927 0.355
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.105 0.12 166 0.893 1.369 1 0.927 0.355
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.878 0.095 166 0.708 1.088 1 −1.199 0.232
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.878 0.095 166 0.708 1.088 1 −1.199 0.232
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.924 0.104 166 0.739 1.155 1 −0.702 0.484
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.924 0.104 166 0.739 1.155 1 −0.702 0.484
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.259 0.144 166 1.004 1.579 1 2.011 0.046 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.259 0.144 166 1.004 1.579 1 2.011 0.046 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.197 0.142 166 0.947 1.512 1 1.514 0.132
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.197 0.142 166 0.947 1.512 1 1.514 0.132
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.95 0.113 166 0.751 1.201 1 −0.43 0.668
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.95 0.113 166 0.751 1.201 1 −0.43 0.668
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


22.2 Gluδ2-labelled Parallel fiber Area in the ML

22.2.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 1.979 0.531 0.282 0.268 0.84 1.09 3.24 0.425 −0.348 30
IH 1.811 0.52 0.27 0.287 0.815 0.621 2.92 −0.191 −0.183 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 1.979 0.531 0.282 0.268 0.84 1.09 3.24 0.425 −0.348 30
IH 1.811 0.52 0.27 0.287 0.815 0.621 2.92 −0.191 −0.183 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.019 0.508 0.258 0.252 0.775 0.98 3.11 −0.061 −0.113 29
IH 1.942 0.464 0.215 0.239 0.695 1.05 2.83 0.047 −0.665 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.019 0.508 0.258 0.252 0.775 0.98 3.11 −0.061 −0.113 29
IH 1.942 0.464 0.215 0.239 0.695 1.05 2.83 0.047 −0.665 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.201 0.59 0.348 0.268 0.745 0.991 3.41 −0.229 −0.118 24
IH 1.844 0.509 0.259 0.276 0.44 0.941 3.25 0.538 1.11 27
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.201 0.59 0.348 0.268 0.745 0.991 3.41 −0.229 −0.118 24
IH 1.844 0.509 0.259 0.276 0.44 0.941 3.25 0.538 1.11 27

22.2.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
293.41 294.32 318.40 0.19 0.06 0.14 0.48 0.26
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
293.41 294.32 318.40 0.19 0.06 0.14 0.48 0.26

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
290.19 291.10 315.18 0.06 0.02 0.04 0.48 0.49
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
290.19 291.10 315.18 0.06 0.02 0.04 0.48 0.49

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

22.2.3 Effects Analysis

```{r}
glmmTMB(formula = A_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

22.2.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 1.957 0.094 (1.78, 2.15) 14.015 < .001
Condition1 1.054 0.051 (0.96, 1.16) 1.107 0.268
Z1 0.949 0.027 (0.90, 1.00) -1.801 0.072
Z2 1.008 0.029 (0.95, 1.07) 0.296 0.767
Condition1 * Z1 1.001 0.029 (0.95, 1.06) 0.048 0.961
Condition1 * Z2 0.968 0.028 (0.92, 1.02) -1.154 0.248
Model: A_GLUD2 ~ Condition * Z (168 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 1.957 0.094 (1.78, 2.15) 14.015 < .001
Condition1 1.054 0.051 (0.96, 1.16) 1.107 0.268
Z1 0.949 0.027 (0.90, 1.00) -1.801 0.072
Z2 1.008 0.029 (0.95, 1.07) 0.296 0.767
Condition1 * Z1 1.001 0.029 (0.95, 1.06) 0.048 0.961
Condition1 * Z2 0.968 0.028 (0.92, 1.02) -1.154 0.248
Model: A_GLUD2 ~ Condition * Z (168 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 1.23 1 0.270
Z 3.61 2 0.160
Condition:Z 1.64 2 0.440
term statistic df p.value
Condition 1.23 1 0.270
Z 3.61 2 0.160
Condition:Z 1.64 2 0.440

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 260.08 275.70 -125.04 250.08
mod_full 8 262.86 287.85 -123.43 246.86 3.22 3 0.360
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 260.08 275.70 -125.04 250.08
mod_full 8 262.86 287.85 -123.43 246.86 3.22 3 0.360
Important

Our LRT() method removes the predictor plus all its interactions

22.2.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 2.063 0.14 166 1.805 2.359
IH 1.856 0.126 166 1.624 2.121
Condition response SE df lower.CL upper.CL
N 2.063 0.14 166 1.805 2.359
IH 1.856 0.126 166 1.624 2.121
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.112 0.107 166 0.92 1.343 1 1.107 0.270
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.112 0.107 166 0.92 1.343 1 1.107 0.270
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 1.858 0.103 166 1.665 2.073
Med 1.973 0.109 166 1.769 2.201
Post 2.043 0.117 166 1.826 2.287
Z response SE df lower.CL upper.CL
Ant 1.858 0.103 166 1.665 2.073
Med 1.973 0.109 166 1.769 2.201
Post 2.043 0.117 166 1.826 2.287
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.942 0.046 166 0.855 1.037 1 −1.23 0.220
Ant / Post 0.909 0.046 166 0.822 1.006 1 −1.865 0.064
Med / Post 0.966 0.049 166 0.874 1.067 1 −0.692 0.490
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 0.942 0.046 166 0.855 1.037 1 −1.23 0.220
Ant / Post 0.909 0.046 166 0.822 1.006 1 −1.865 0.064
Med / Post 0.966 0.049 166 0.874 1.067 1 −0.692 0.490
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 1.962 0.153 166 1.682 2.288
IH 1.759 0.139 166 1.506 2.056
Condition response SE df lower.CL upper.CL
N 1.962 0.153 166 1.682 2.288
IH 1.759 0.139 166 1.506 2.056
Condition response SE df lower.CL upper.CL
N 2.013 0.158 166 1.725 2.35
IH 1.934 0.152 166 1.656 2.258
Condition response SE df lower.CL upper.CL
N 2.013 0.158 166 1.725 2.35
IH 1.934 0.152 166 1.656 2.258
Condition response SE df lower.CL upper.CL
N 2.224 0.181 166 1.893 2.612
IH 1.878 0.15 166 1.604 2.198
Condition response SE df lower.CL upper.CL
N 2.224 0.181 166 1.893 2.612
IH 1.878 0.15 166 1.604 2.198
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.115 0.124 166 0.896 1.388 1 0.982 0.328
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.115 0.124 166 0.896 1.388 1 0.982 0.328
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.041 0.115 166 0.836 1.296 1 0.363 0.717
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.041 0.115 166 0.836 1.296 1 0.363 0.717
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.184 0.135 166 0.945 1.483 1 1.483 0.140
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.184 0.135 166 0.945 1.483 1 1.483 0.140
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.071 0.105 166 0.883 1.299 1 0.7 0.485
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.071 0.105 166 0.883 1.299 1 0.7 0.485
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.942 0.096 166 0.77 1.151 1 −0.592 0.555
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.942 0.096 166 0.77 1.151 1 −0.592 0.555
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.879 0.089 166 0.72 1.073 1 −1.275 0.204
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.879 0.089 166 0.72 1.073 1 −1.275 0.204
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


22.3 Gluδ2-labelled Parallel fiber Volume in the ML

22.3.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.083 0.28 0.079 0.135 0.39 1.4 2.81 0.187 0.957 30
IH 2.077 0.466 0.218 0.225 0.55 0.27 2.64 −2.125 7.201 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.083 0.28 0.079 0.135 0.39 1.4 2.81 0.187 0.957 30
IH 2.077 0.466 0.218 0.225 0.55 0.27 2.64 −2.125 7.201 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 1.944 0.317 0.1 0.163 0.545 1.36 2.43 −0.077 −1.138 29
IH 2.133 0.335 0.112 0.157 0.605 1.53 2.61 −0.476 −1.122 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 1.944 0.317 0.1 0.163 0.545 1.36 2.43 −0.077 −1.138 29
IH 2.133 0.335 0.112 0.157 0.605 1.53 2.61 −0.476 −1.122 29
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.094 0.409 0.167 0.195 0.525 0.963 2.9 −0.622 1.505 24
IH 1.983 0.332 0.11 0.168 0.51 1.34 2.59 −0.12 −0.717 27
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 2.094 0.409 0.167 0.195 0.525 0.963 2.9 −0.622 1.505 24
IH 1.983 0.332 0.11 0.168 0.51 1.34 2.59 −0.12 −0.717 27

22.3.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = Vol_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
227.08 227.98 252.07 0.03 0.03 1.94e-03 0.35 0.20
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
227.08 227.98 252.07 0.03 0.03 1.94e-03 0.35 0.20

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = Vol_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
181.96 182.87 206.95 0.01 8.27e-03 2.77e-03 0.35 0.36
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
181.96 182.87 206.95 0.01 8.27e-03 2.77e-03 0.35 0.36

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

22.3.3 Effects Analysis

```{r}
glmmTMB(formula = Vol_GLUD2 ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

22.3.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 2.051 0.033 (1.99, 2.12) 44.091 < .001
Condition1 0.994 0.016 (0.96, 1.03) -0.360 0.719
Z1 1.014 0.023 (0.97, 1.06) 0.634 0.526
Z2 0.993 0.022 (0.95, 1.04) -0.324 0.746
Condition1 * Z1 1.007 0.022 (0.96, 1.05) 0.329 0.742
Condition1 * Z2 0.960 0.021 (0.92, 1.00) -1.822 0.068
Model: Vol_GLUD2 ~ Condition * Z (168 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 2.051 0.033 (1.99, 2.12) 44.091 < .001
Condition1 0.994 0.016 (0.96, 1.03) -0.360 0.719
Z1 1.014 0.023 (0.97, 1.06) 0.634 0.526
Z2 0.993 0.022 (0.95, 1.04) -0.324 0.746
Condition1 * Z1 1.007 0.022 (0.96, 1.05) 0.329 0.742
Condition1 * Z2 0.960 0.021 (0.92, 1.00) -1.822 0.068
Model: Vol_GLUD2 ~ Condition * Z (168 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.13 1 0.720
Z 0.40 2 0.820
Condition:Z 3.66 2 0.160
term statistic df p.value
Condition 0.13 1 0.720
Z 0.40 2 0.820
Condition:Z 3.66 2 0.160

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 188.39 204.01 -89.20 178.39
mod_full 8 190.43 215.42 -87.22 174.43 3.96 3 0.270
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 188.39 204.01 -89.20 178.39
mod_full 8 190.43 215.42 -87.22 174.43 3.96 3 0.270
Important

Our LRT() method removes the predictor plus all its interactions

22.3.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 2.039 0.047 166 1.948 2.135
IH 2.063 0.047 166 1.972 2.158
Condition response SE df lower.CL upper.CL
N 2.039 0.047 166 1.948 2.135
IH 2.063 0.047 166 1.972 2.158
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.988 0.032 166 0.927 1.054 1 −0.36 0.719
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.988 0.032 166 0.927 1.054 1 −0.36 0.719
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 2.08 0.056 166 1.972 2.194
Med 2.036 0.055 166 1.93 2.148
Post 2.037 0.06 166 1.922 2.158
Z response SE df lower.CL upper.CL
Ant 2.08 0.056 166 1.972 2.194
Med 2.036 0.055 166 1.93 2.148
Post 2.037 0.06 166 1.922 2.158
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.022 0.039 166 0.948 1.101 1 0.563 0.575
Ant / Post 1.021 0.041 166 0.944 1.105 1 0.531 0.596
Med / Post 1 0.04 166 0.925 1.081 1 −0.005 0.996
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.022 0.039 166 0.948 1.101 1 0.563 0.575
Ant / Post 1.021 0.041 166 0.944 1.105 1 0.531 0.596
Med / Post 1 0.04 166 0.925 1.081 1 −0.005 0.996
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 2.083 0.079 166 1.934 2.244
IH 2.077 0.08 166 1.925 2.241
Condition response SE df lower.CL upper.CL
N 2.083 0.079 166 1.934 2.244
IH 2.077 0.08 166 1.925 2.241
Condition response SE df lower.CL upper.CL
N 1.944 0.075 166 1.803 2.097
IH 2.133 0.082 166 1.977 2.3
Condition response SE df lower.CL upper.CL
N 1.944 0.075 166 1.803 2.097
IH 2.133 0.082 166 1.977 2.3
Condition response SE df lower.CL upper.CL
N 2.093 0.089 166 1.925 2.276
IH 1.982 0.079 166 1.831 2.145
Condition response SE df lower.CL upper.CL
N 2.093 0.089 166 1.925 2.276
IH 1.982 0.079 166 1.831 2.145
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.003 0.054 166 0.902 1.115 1 0.052 0.958
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.003 0.054 166 0.902 1.115 1 0.052 0.958
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.912 0.049 166 0.819 1.015 1 −1.705 0.090
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.912 0.049 166 0.819 1.015 1 −1.705 0.090
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.056 0.061 166 0.942 1.184 1 0.942 0.348
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.056 0.061 166 0.942 1.184 1 0.942 0.348
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.1 0.083 166 0.947 1.277 1 1.259 0.210
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.1 0.083 166 0.947 1.277 1 1.259 0.210
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.95 0.074 166 0.814 1.108 1 −0.66 0.510
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.95 0.074 166 0.814 1.108 1 −0.66 0.510
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.863 0.068 166 0.739 1.008 1 −1.87 0.063
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.863 0.068 166 0.739 1.008 1 −1.87 0.063
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot: