16 Teens
❖ Data
❖ Description
| Variable | Description |
|---|---|
| Mouse |
Mouse unique identifier |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Grip_Strength |
Grip Strength (g) |
| Variable | Description |
|---|---|
| Mouse |
Mouse unique identifier |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Grip_Strength |
Grip Strength (g) |
❖ Correlations
16.1 Grip Strength
16.1.1 Data Exploration
❖ Distribution:
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 0.485 | 0.121 | 0.015 | 0.249 | 0.215 | 0.3 | 0.64 | −0.394 | −1.46 | 12 |
| IH | 0.361 | 0.097 | 0.009 | 0.269 | 0.155 | 0.22 | 0.53 | 0.095 | −0.268 | 9 |
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 0.485 | 0.121 | 0.015 | 0.249 | 0.215 | 0.3 | 0.64 | −0.394 | −1.46 | 12 |
| IH | 0.361 | 0.097 | 0.009 | 0.269 | 0.155 | 0.22 | 0.53 | 0.095 | −0.268 | 9 |
16.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Grip_Strength ~ Condition + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| -20.19 | -17.69 | -16.01 | 0.26 | 0.23 | 0.04 | 0.10 | 0.26 |
| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| -20.19 | -17.69 | -16.01 | 0.26 | 0.23 | 0.04 | 0.10 | 0.26 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Grip_Strength ~ Condition + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| -21.17 | -18.67 | -16.99 | 0.78 | 0.49 | 0.57 | 0.09 | 0.10 |
| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| -21.17 | -18.67 | -16.99 | 0.78 | 0.49 | 0.57 | 0.09 | 0.10 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
16.1.3 Effects Analysis
```{r}
glmmTMB(formula = Grip_Strength ~ Condition + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```16.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 0.484 | 0.040 | (0.41, 0.57) | -8.863 | < .001 |
| Condition2 | 0.746 | 0.092 | (0.59, 0.95) | -2.369 | 0.018 * |
| Model: Grip_Strength ~ Condition (21 Observations) | |||||
| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 0.484 | 0.040 | (0.41, 0.57) | -8.863 | < .001 |
| Condition2 | 0.746 | 0.092 | (0.59, 0.95) | -2.369 | 0.018 * |
| Model: Grip_Strength ~ Condition (21 Observations) | |||||
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 5.61 | 1 | 0.020 * |
| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 5.61 | 1 | 0.020 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | -23.51 | -20.38 | 14.76 | -29.51 | |||
| mod_full | 4 | -26.56 | -22.38 | 17.28 | -34.56 | 5.04 | 1 | 0.020 * |
| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | -23.51 | -20.38 | 14.76 | -29.51 | |||
| mod_full | 4 | -26.56 | -22.38 | 17.28 | -34.56 | 5.04 | 1 | 0.020 * |
Our LRT() method removes the predictor plus all its interactions
16.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")| Condition | response | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 0.484 | 0.04 | 19 | 0.407 | 0.574 |
| IH | 0.361 | 0.033 | 19 | 0.297 | 0.438 |
| Condition | response | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 0.484 | 0.04 | 19 | 0.407 | 0.574 |
| IH | 0.361 | 0.033 | 19 | 0.297 | 0.438 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)| contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
|---|---|---|---|---|---|---|---|---|
| N / IH | 1.34 | 0.165 | 19 | 1.035 | 1.735 | 1 | 2.369 | 0.029 * |
| contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
|---|---|---|---|---|---|---|---|---|
| N / IH | 1.34 | 0.165 | 19 | 1.035 | 1.735 | 1 | 2.369 | 0.029 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: