18 Adults (Platforms)
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Percent_Distance_Target |
Percentage of distance covered in the target quadrant over the total distance covered |
Percent_Time_Target |
Percentage of time spent in the target quadrant over the total time of the test |
Act_Mean_Speed |
Actimetry Mean Speed (m/s) |
Act_Distance |
Actimetry Distance (m) |
Crossing_Time |
Crossing Time (s) |
Nbr_Missteps |
Number of Missteps |
Rearing_Time |
Rearing Time |
Grooming_Time |
Grooming Time |
Open_Arms_Time |
Time in Open Arms |
Closed_Arms_Time |
Time in Closed Arms |
Nbr_Entry_Open |
Number of Entries in Open Arms |
Nbr_Entry_Closed |
Number of Entries in Closed Arms |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Percent_Distance_Target |
Percentage of distance covered in the target quadrant over the total distance covered |
Percent_Time_Target |
Percentage of time spent in the target quadrant over the total time of the test |
Act_Mean_Speed |
Actimetry Mean Speed (m/s) |
Act_Distance |
Actimetry Distance (m) |
Crossing_Time |
Crossing Time (s) |
Nbr_Missteps |
Number of Missteps |
Rearing_Time |
Rearing Time |
Grooming_Time |
Grooming Time |
Open_Arms_Time |
Time in Open Arms |
Closed_Arms_Time |
Time in Closed Arms |
Nbr_Entry_Open |
Number of Entries in Open Arms |
Nbr_Entry_Closed |
Number of Entries in Closed Arms |
❖ Correlations
18.1 Distance % covered in the target quadrant
18.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.511 | 0.13 | 0.017 | 0.255 | 0.12 | 0.33 | 0.79 | 0.867 | 0.835 | 14 |
IH | 0.392 | 0.108 | 0.012 | 0.275 | 0.118 | 0.12 | 0.49 | −2.009 | 4.753 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.511 | 0.13 | 0.017 | 0.255 | 0.12 | 0.33 | 0.79 | 0.867 | 0.835 | 14 |
IH | 0.392 | 0.108 | 0.012 | 0.275 | 0.118 | 0.12 | 0.49 | −2.009 | 4.753 | 10 |
18.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Percent_Distance_Target ~ Condition, data = data,
family = beta_family("logit"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-23.27 | -22.07 | -19.74 | 0.44 | 0.12 | 14.42 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-23.27 | -22.07 | -19.74 | 0.44 | 0.12 | 14.42 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Percent_Distance_Target ~ Condition, data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-22.59 | -21.39 | -19.06 | 0.02 | 0.12 | 0.12 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-22.59 | -21.39 | -19.06 | 0.02 | 0.12 | 0.12 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.1.3 Effects Analysis
18.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.054 | 0.143 | (0.81, 1.38) | 0.389 | 0.697 |
Condition2 | 0.604 | 0.129 | (0.40, 0.92) | -2.359 | 0.018 * |
Model: Percent_Distance_Target ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.054 | 0.143 | (0.81, 1.38) | 0.389 | 0.697 |
Condition2 | 0.604 | 0.129 | (0.40, 0.92) | -2.359 | 0.018 * |
Model: Percent_Distance_Target ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 5.57 | 1 | 0.020 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 5.57 | 1 | 0.020 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -23.84 | -21.48 | 13.92 | -27.84 | |||
mod_full | 3 | -27.27 | -23.74 | 16.63 | -33.27 | 5.43 | 1 | 0.020 * |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -23.84 | -21.48 | 13.92 | -27.84 | |||
mod_full | 3 | -27.27 | -23.74 | 16.63 | -33.27 | 5.43 | 1 | 0.020 * |
18.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.513 | 0.034 | 23 | 0.443 | 0.583 |
IH | 0.389 | 0.039 | 23 | 0.312 | 0.472 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.513 | 0.034 | 23 | 0.443 | 0.583 |
IH | 0.389 | 0.039 | 23 | 0.312 | 0.472 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.655 | 0.353 | 23 | 1.064 | 2.574 | 1 | 2.359 | 0.027 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.655 | 0.353 | 23 | 1.064 | 2.574 | 1 | 2.359 | 0.027 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
18.2 Time % spent in the target quadrant
18.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.513 | 0.156 | 0.024 | 0.304 | 0.182 | 0.22 | 0.78 | −0.056 | −0.115 | 14 |
IH | 0.384 | 0.115 | 0.013 | 0.301 | 0.13 | 0.11 | 0.52 | −1.448 | 3.271 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.513 | 0.156 | 0.024 | 0.304 | 0.182 | 0.22 | 0.78 | −0.056 | −0.115 | 14 |
IH | 0.384 | 0.115 | 0.013 | 0.301 | 0.13 | 0.11 | 0.52 | −1.448 | 3.271 | 10 |
18.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Percent_Time_Target ~ Condition, data = data,
family = beta_family("logit"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-17.78 | -16.58 | -14.24 | 0.45 | 0.13 | 10.95 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-17.78 | -16.58 | -14.24 | 0.45 | 0.13 | 10.95 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Percent_Time_Target ~ Condition, data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-16.13 | -14.93 | -12.60 | 0.02 | 0.13 | 0.14 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-16.13 | -14.93 | -12.60 | 0.02 | 0.13 | 0.14 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.2.3 Effects Analysis
18.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.052 | 0.162 | (0.78, 1.42) | 0.331 | 0.741 |
Condition2 | 0.590 | 0.143 | (0.37, 0.95) | -2.176 | 0.030 * |
Model: Percent_Time_Target ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.052 | 0.162 | (0.78, 1.42) | 0.331 | 0.741 |
Condition2 | 0.590 | 0.143 | (0.37, 0.95) | -2.176 | 0.030 * |
Model: Percent_Time_Target ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.73 | 1 | 0.030 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.73 | 1 | 0.030 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -18.57 | -16.21 | 11.28 | -22.57 | |||
mod_full | 3 | -21.26 | -17.72 | 13.63 | -27.26 | 4.69 | 1 | 0.030 * |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -18.57 | -16.21 | 11.28 | -22.57 | |||
mod_full | 3 | -21.26 | -17.72 | 13.63 | -27.26 | 4.69 | 1 | 0.030 * |
18.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.513 | 0.039 | 23 | 0.433 | 0.592 |
IH | 0.383 | 0.044 | 23 | 0.296 | 0.478 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.513 | 0.039 | 23 | 0.433 | 0.592 |
IH | 0.383 | 0.044 | 23 | 0.296 | 0.478 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.696 | 0.411 | 23 | 1.026 | 2.801 | 1 | 2.176 | 0.040 * |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.696 | 0.411 | 23 | 1.026 | 2.801 | 1 | 2.176 | 0.040 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
18.3 Actimetry Mean Speed
18.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.042 | 0.014 | 0 | 0.326 | 0.02 | 0.026 | 0.068 | 0.848 | −0.429 | 14 |
IH | 0.046 | 0.013 | 0 | 0.289 | 0.021 | 0.022 | 0.06 | −1.039 | −0.145 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.042 | 0.014 | 0 | 0.326 | 0.02 | 0.026 | 0.068 | 0.848 | −0.429 | 14 |
IH | 0.046 | 0.013 | 0 | 0.289 | 0.021 | 0.022 | 0.06 | −1.039 | −0.145 | 10 |
18.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Act_Mean_Speed ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-128.97 | -127.77 | -125.44 | 2.62e-03 | 0.01 | 0.32 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-128.97 | -127.77 | -125.44 | 2.62e-03 | 0.01 | 0.32 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Act_Mean_Speed ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-128.60 | -127.40 | -125.07 | 2.62e-03 | 0.01 | 0.01 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
-128.60 | -127.40 | -125.07 | 2.62e-03 | 0.01 | 0.01 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.3.3 Effects Analysis
18.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.042 | 0.004 | (0.04, 0.05) | -37.342 | < .001 |
Condition2 | 1.107 | 0.146 | (0.85, 1.43) | 0.771 | 0.441 |
Model: Act_Mean_Speed ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.042 | 0.004 | (0.04, 0.05) | -37.342 | < .001 |
Condition2 | 1.107 | 0.146 | (0.85, 1.43) | 0.771 | 0.441 |
Model: Act_Mean_Speed ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.59 | 1 | 0.440 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.59 | 1 | 0.440 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -136.26 | -133.90 | 70.13 | -140.26 | |||
mod_full | 3 | -134.90 | -131.36 | 70.45 | -140.90 | 0.64 | 1 | 0.420 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | -136.26 | -133.90 | 70.13 | -140.26 | |||
mod_full | 3 | -134.90 | -131.36 | 70.45 | -140.90 | 0.64 | 1 | 0.420 |
18.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.042 | 0.004 | 23 | 0.035 | 0.05 |
IH | 0.046 | 0.005 | 23 | 0.037 | 0.057 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.042 | 0.004 | 23 | 0.035 | 0.05 |
IH | 0.046 | 0.005 | 23 | 0.037 | 0.057 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.903 | 0.119 | 23 | 0.688 | 1.187 | 1 | −0.771 | 0.449 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.903 | 0.119 | 23 | 0.688 | 1.187 | 1 | −0.771 | 0.449 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.4 Actimetry Distance
18.4.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 25.02 | 8.134 | 66.162 | 0.325 | 11.517 | 15.579 | 40.864 | 0.865 | −0.388 | 14 |
IH | 27.626 | 8.015 | 64.24 | 0.29 | 12.621 | 13.149 | 36.213 | −1.033 | −0.164 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 25.02 | 8.134 | 66.162 | 0.325 | 11.517 | 15.579 | 40.864 | 0.865 | −0.388 | 14 |
IH | 27.626 | 8.015 | 64.24 | 0.29 | 12.621 | 13.149 | 36.213 | −1.033 | −0.164 | 10 |
18.4.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Act_Distance ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
178.02 | 179.22 | 181.56 | 2.48e-03 | 7.74 | 0.32 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
178.02 | 179.22 | 181.56 | 2.48e-03 | 7.74 | 0.32 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Act_Distance ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
178.42 | 179.62 | 181.95 | 2.48e-03 | 7.74 | 8.09 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
178.42 | 179.62 | 181.95 | 2.48e-03 | 7.74 | 8.09 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.4.3 Effects Analysis
18.4.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 25.020 | 2.126 | (21.18, 29.55) | 37.893 | < .001 |
Condition2 | 1.104 | 0.145 | (0.85, 1.43) | 0.753 | 0.452 |
Model: Act_Distance ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 25.020 | 2.126 | (21.18, 29.55) | 37.893 | < .001 |
Condition2 | 1.104 | 0.145 | (0.85, 1.43) | 0.753 | 0.452 |
Model: Act_Distance ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.57 | 1 | 0.450 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.57 | 1 | 0.450 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 170.70 | 173.05 | -83.35 | 166.70 | |||
mod_full | 3 | 172.09 | 175.62 | -83.04 | 166.09 | 0.61 | 1 | 0.430 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 170.70 | 173.05 | -83.35 | 166.70 | |||
mod_full | 3 | 172.09 | 175.62 | -83.04 | 166.09 | 0.61 | 1 | 0.430 |
18.4.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 25.02 | 2.126 | 23 | 20.987 | 29.828 |
IH | 27.626 | 2.777 | 23 | 22.438 | 34.012 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 25.02 | 2.126 | 23 | 20.987 | 29.828 |
IH | 27.626 | 2.777 | 23 | 22.438 | 34.012 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.906 | 0.119 | 23 | 0.69 | 1.189 | 1 | −0.753 | 0.459 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.906 | 0.119 | 23 | 0.69 | 1.189 | 1 | −0.753 | 0.459 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.5 Crossing Time
18.5.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 11.718 | 4.781 | 22.858 | 0.408 | 5.866 | 6.573 | 24.883 | 1.743 | 3.632 | 14 |
IH | 12.233 | 3.747 | 14.039 | 0.306 | 4.848 | 8.523 | 19.853 | 1.363 | 0.809 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 11.718 | 4.781 | 22.858 | 0.408 | 5.866 | 6.573 | 24.883 | 1.743 | 3.632 | 14 |
IH | 12.233 | 3.747 | 14.039 | 0.306 | 4.848 | 8.523 | 19.853 | 1.363 | 0.809 | 10 |
18.5.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Crossing_Time ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
142.50 | 143.70 | 146.03 | 4.69e-04 | 4.20 | 0.33 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
142.50 | 143.70 | 146.03 | 4.69e-04 | 4.20 | 0.33 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Crossing_Time ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
148.37 | 149.57 | 151.91 | 4.69e-04 | 4.20 | 4.39 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
148.37 | 149.57 | 151.91 | 4.69e-04 | 4.20 | 4.39 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.5.3 Effects Analysis
18.5.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 11.718 | 1.046 | (9.84, 13.96) | 27.575 | < .001 |
Condition2 | 1.044 | 0.144 | (0.80, 1.37) | 0.311 | 0.756 |
Model: Crossing_Time ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 11.718 | 1.046 | (9.84, 13.96) | 27.575 | < .001 |
Condition2 | 1.044 | 0.144 | (0.80, 1.37) | 0.311 | 0.756 |
Model: Crossing_Time ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.760 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.760 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 134.86 | 137.22 | -65.43 | 130.86 | |||
mod_full | 3 | 136.76 | 140.29 | -65.38 | 130.76 | 0.11 | 1 | 0.750 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 134.86 | 137.22 | -65.43 | 130.86 | |||
mod_full | 3 | 136.76 | 140.29 | -65.38 | 130.76 | 0.11 | 1 | 0.750 |
18.5.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 11.718 | 1.046 | 23 | 9.742 | 14.094 |
IH | 12.233 | 1.292 | 23 | 9.832 | 15.219 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 11.718 | 1.046 | 23 | 9.742 | 14.094 |
IH | 12.233 | 1.292 | 23 | 9.832 | 15.219 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.958 | 0.132 | 23 | 0.72 | 1.275 | 1 | −0.311 | 0.759 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.958 | 0.132 | 23 | 0.72 | 1.275 | 1 | −0.311 | 0.759 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.6 Number of Missteps
18.6.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.881 | 0.902 | 0.814 | 1.024 | 1.667 | 0 | 2.333 | 0.388 | −1.372 | 14 |
IH | 2.9 | 2.132 | 4.544 | 0.735 | 3 | 0.667 | 7 | 1.07 | 0.124 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.881 | 0.902 | 0.814 | 1.024 | 1.667 | 0 | 2.333 | 0.388 | −1.372 | 14 |
IH | 2.9 | 2.132 | 4.544 | 0.735 | 3 | 0.667 | 7 | 1.07 | 0.124 | 10 |
18.6.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Nbr_Missteps ~ Condition, data = data, family = gaussian("identity"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
92.08 | 93.28 | 95.61 | 0.51 | 1.46 | 1.53 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
92.08 | 93.28 | 95.61 | 0.51 | 1.46 | 1.53 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
18.6.3 Effects Analysis
18.6.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.881 | 0.409 | (0.08, 1.68) | 2.155 | 0.031 * |
Condition2 | 2.019 | 0.633 | (0.78, 3.26) | 3.188 | 0.001 *** |
Model: Nbr_Missteps ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.881 | 0.409 | (0.08, 1.68) | 2.155 | 0.031 * |
Condition2 | 2.019 | 0.633 | (0.78, 3.26) | 3.188 | 0.001 *** |
Model: Nbr_Missteps ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 10.16 | 1 | 0.001 ** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 10.16 | 1 | 0.001 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 99.54 | 101.89 | -47.77 | 95.54 | |||
mod_full | 3 | 92.42 | 95.96 | -43.21 | 86.42 | 9.11 | 1 | 0.003 ** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 99.54 | 101.89 | -47.77 | 95.54 | |||
mod_full | 3 | 92.42 | 95.96 | -43.21 | 86.42 | 9.11 | 1 | 0.003 ** |
18.6.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | emmean | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.881 | 0.409 | 23 | 0.035 | 1.727 |
IH | 2.9 | 0.484 | 23 | 1.899 | 3.901 |
Condition | emmean | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.881 | 0.409 | 23 | 0.035 | 1.727 |
IH | 2.9 | 0.484 | 23 | 1.899 | 3.901 |
- Confidence level used: 0.95
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
---|---|---|---|---|---|---|---|
N - IH | −2.019 | 0.633 | 23 | −3.329 | −0.709 | −3.188 | 0.004 ** |
contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
---|---|---|---|---|---|---|---|
N - IH | −2.019 | 0.633 | 23 | −3.329 | −0.709 | −3.188 | 0.004 ** |
- Confidence level used: 0.95
❖ Boxplot:
18.7 Rearing Time
18.7.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 58.357 | 22.321 | 498.247 | 0.382 | 25.25 | 32 | 121 | 1.658 | 4.293 | 14 |
IH | 56 | 18.439 | 340 | 0.329 | 31.5 | 21 | 76 | −0.656 | −0.51 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 58.357 | 22.321 | 498.247 | 0.382 | 25.25 | 32 | 121 | 1.658 | 4.293 | 14 |
IH | 56 | 18.439 | 340 | 0.329 | 31.5 | 21 | 76 | −0.656 | −0.51 | 10 |
18.7.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Rearing_Time ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
220.88 | 222.08 | 224.42 | 4.31e-04 | 19.93 | 0.36 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
220.88 | 222.08 | 224.42 | 4.31e-04 | 19.93 | 0.36 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Rearing_Time ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
223.14 | 224.34 | 226.68 | 4.31e-04 | 19.93 | 20.82 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
223.14 | 224.34 | 226.68 | 4.31e-04 | 19.93 | 20.82 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.7.3 Effects Analysis
18.7.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 58.357 | 5.611 | (48.33, 70.46) | 42.295 | < .001 |
Condition2 | 0.960 | 0.143 | (0.72, 1.28) | -0.277 | 0.782 |
Model: Rearing_Time ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 58.357 | 5.611 | (48.33, 70.46) | 42.295 | < .001 |
Condition2 | 0.960 | 0.143 | (0.72, 1.28) | -0.277 | 0.782 |
Model: Rearing_Time ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.08 | 1 | 0.780 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.08 | 1 | 0.780 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 213.53 | 215.88 | -104.76 | 209.53 | |||
mod_full | 3 | 215.44 | 218.98 | -104.72 | 209.44 | 0.08 | 1 | 0.770 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 213.53 | 215.88 | -104.76 | 209.53 | |||
mod_full | 3 | 215.44 | 218.98 | -104.72 | 209.44 | 0.08 | 1 | 0.770 |
18.7.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 58.357 | 5.611 | 23 | 47.831 | 71.199 |
IH | 56 | 6.371 | 23 | 44.257 | 70.859 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 58.357 | 5.611 | 23 | 47.831 | 71.199 |
IH | 56 | 6.371 | 23 | 44.257 | 70.859 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.042 | 0.155 | 23 | 0.766 | 1.418 | 1 | 0.277 | 0.784 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.042 | 0.155 | 23 | 0.766 | 1.418 | 1 | 0.277 | 0.784 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.8 Grooming Time
18.8.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 26.764 | 15.256 | 232.744 | 0.57 | 23.3 | 10.9 | 64.1 | 1.301 | 1.375 | 14 |
IH | 33.5 | 12.528 | 156.958 | 0.374 | 18 | 21.4 | 61.3 | 1.353 | 1.659 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 26.764 | 15.256 | 232.744 | 0.57 | 23.3 | 10.9 | 64.1 | 1.301 | 1.375 | 14 |
IH | 33.5 | 12.528 | 156.958 | 0.374 | 18 | 21.4 | 61.3 | 1.353 | 1.659 | 10 |
18.8.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Grooming_Time ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
198.35 | 199.55 | 201.89 | 0.01 | 13.60 | 0.46 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
198.35 | 199.55 | 201.89 | 0.01 | 13.60 | 0.46 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Grooming_Time ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
203.73 | 204.93 | 207.26 | 0.01 | 13.60 | 14.20 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
203.73 | 204.93 | 207.26 | 0.01 | 13.60 | 14.20 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.8.3 Effects Analysis
18.8.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 26.764 | 3.292 | (21.03, 34.06) | 26.721 | < .001 |
Condition2 | 1.252 | 0.239 | (0.86, 1.82) | 1.178 | 0.239 |
Model: Grooming_Time ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 26.764 | 3.292 | (21.03, 34.06) | 26.721 | < .001 |
Condition2 | 1.252 | 0.239 | (0.86, 1.82) | 1.178 | 0.239 |
Model: Grooming_Time ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.39 | 1 | 0.240 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.39 | 1 | 0.240 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 193.38 | 195.73 | -94.69 | 189.38 | |||
mod_full | 3 | 193.90 | 197.44 | -93.95 | 187.90 | 1.48 | 1 | 0.220 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 193.38 | 195.73 | -94.69 | 189.38 | |||
mod_full | 3 | 193.90 | 197.44 | -93.95 | 187.90 | 1.48 | 1 | 0.220 |
18.8.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 26.764 | 3.292 | 23 | 20.751 | 34.52 |
IH | 33.5 | 4.876 | 23 | 24.79 | 45.27 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 26.764 | 3.292 | 23 | 20.751 | 34.52 |
IH | 33.5 | 4.876 | 23 | 24.79 | 45.27 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.799 | 0.152 | 23 | 0.539 | 1.185 | 1 | −1.178 | 0.251 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.799 | 0.152 | 23 | 0.539 | 1.185 | 1 | −1.178 | 0.251 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.9 Time in Open Arms
18.9.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 18.814 | 21.885 | 478.932 | 1.163 | 22.725 | 1.2 | 77.7 | 1.874 | 3.372 | 14 |
IH | 21.52 | 18.127 | 328.577 | 0.842 | 29.675 | 0.1 | 49.3 | 0.48 | −1.027 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 18.814 | 21.885 | 478.932 | 1.163 | 22.725 | 1.2 | 77.7 | 1.874 | 3.372 | 14 |
IH | 21.52 | 18.127 | 328.577 | 0.842 | 29.675 | 0.1 | 49.3 | 0.48 | −1.027 | 10 |
18.9.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Open_Arms_Time ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
196.85 | 198.05 | 200.39 | 4.56e-03 | 19.56 | 1.19 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
196.85 | 198.05 | 200.39 | 4.56e-03 | 19.56 | 1.19 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Open_Arms_Time ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
218.13 | 219.33 | 221.67 | 4.56e-03 | 19.56 | 20.43 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
218.13 | 219.33 | 221.67 | 4.56e-03 | 19.56 | 20.43 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.9.3 Effects Analysis
18.9.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 18.814 | 5.959 | (10.11, 35.00) | 9.266 | < .001 |
Condition2 | 1.144 | 0.561 | (0.44, 2.99) | 0.274 | 0.784 |
Model: Open_Arms_Time ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 18.814 | 5.959 | (10.11, 35.00) | 9.266 | < .001 |
Condition2 | 1.144 | 0.561 | (0.44, 2.99) | 0.274 | 0.784 |
Model: Open_Arms_Time ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.07 | 1 | 0.780 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.07 | 1 | 0.780 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 194.28 | 196.64 | -95.14 | 190.28 | |||
mod_full | 3 | 196.20 | 199.74 | -95.10 | 190.20 | 0.08 | 1 | 0.780 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 194.28 | 196.64 | -95.14 | 190.28 | |||
mod_full | 3 | 196.20 | 199.74 | -95.10 | 190.20 | 0.08 | 1 | 0.780 |
18.9.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.814 | 5.959 | 23 | 9.771 | 36.226 |
IH | 21.52 | 8.064 | 23 | 9.912 | 46.72 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 18.814 | 5.959 | 23 | 9.771 | 36.226 |
IH | 21.52 | 8.064 | 23 | 9.912 | 46.72 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.874 | 0.429 | 23 | 0.317 | 2.412 | 1 | −0.274 | 0.787 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.874 | 0.429 | 23 | 0.317 | 2.412 | 1 | −0.274 | 0.787 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.10 Time in Closed Arms
18.10.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 236.929 | 28.053 | 786.995 | 0.118 | 34.75 | 163 | 269 | −1.537 | 2.695 | 14 |
IH | 231.3 | 22.613 | 511.344 | 0.098 | 16 | 195 | 279 | 0.438 | 2.052 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 236.929 | 28.053 | 786.995 | 0.118 | 34.75 | 163 | 269 | −1.537 | 2.695 | 14 |
IH | 231.3 | 22.613 | 511.344 | 0.098 | 16 | 195 | 279 | 0.438 | 2.052 | 10 |
18.10.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Closed_Arms_Time ~ Condition, data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
240.13 | 241.33 | 243.66 | 1.47e-04 | 24.86 | 0.12 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
240.13 | 241.33 | 243.66 | 1.47e-04 | 24.86 | 0.12 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Closed_Arms_Time ~ Condition, data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
238.50 | 239.70 | 242.03 | 1.47e-04 | 24.86 | 25.97 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
---|---|---|---|---|---|---|
238.50 | 239.70 | 242.03 | 1.47e-04 | 24.86 | 25.97 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
18.10.3 Effects Analysis
18.10.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 236.929 | 7.304 | (223.04, 251.68) | 177.374 | < .001 |
Condition2 | 0.976 | 0.047 | (0.89, 1.07) | -0.503 | 0.615 |
Model: Closed_Arms_Time ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 236.929 | 7.304 | (223.04, 251.68) | 177.374 | < .001 |
Condition2 | 0.976 | 0.047 | (0.89, 1.07) | -0.503 | 0.615 |
Model: Closed_Arms_Time ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.25 | 1 | 0.610 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.25 | 1 | 0.610 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 228.41 | 230.76 | -112.20 | 224.41 | |||
mod_full | 3 | 230.13 | 233.67 | -112.07 | 224.13 | 0.27 | 1 | 0.600 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 228.41 | 230.76 | -112.20 | 224.41 | |||
mod_full | 3 | 230.13 | 233.67 | -112.07 | 224.13 | 0.27 | 1 | 0.600 |
18.10.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 236.929 | 7.304 | 23 | 222.292 | 252.529 |
IH | 231.3 | 8.436 | 23 | 214.49 | 249.427 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 236.929 | 7.304 | 23 | 222.292 | 252.529 |
IH | 231.3 | 8.436 | 23 | 214.49 | 249.427 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.024 | 0.049 | 23 | 0.928 | 1.131 | 1 | 0.503 | 0.619 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.024 | 0.049 | 23 | 0.928 | 1.131 | 1 | 0.503 | 0.619 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.11 Number of Entries in Open Arms
18.11.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.643 | 2.373 | 5.632 | 0.898 | 3 | 1 | 9 | 1.827 | 3.148 | 14 |
IH | 3 | 2.108 | 4.444 | 0.703 | 3.5 | 0 | 6 | −0.178 | −1.246 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 2.643 | 2.373 | 5.632 | 0.898 | 3 | 1 | 9 | 1.827 | 3.148 | 14 |
IH | 3 | 2.108 | 4.444 | 0.703 | 3.5 | 0 | 6 | −0.178 | −1.246 | 10 |
18.11.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Nbr_Entry_Open ~ Condition, data = data, family = nbinom2("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma | Score_log | Score_spherical |
---|---|---|---|---|---|---|---|---|
106.91 | 108.11 | 110.44 | 4.73e-03 | 2.17 | 3.36 | -2.07 | 0.19 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma | Score_log | Score_spherical |
---|---|---|---|---|---|---|---|---|
106.91 | 108.11 | 110.44 | 4.73e-03 | 2.17 | 3.36 | -2.07 | 0.19 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
performance::check_overdispersion(mod)
# Overdispersion test
dispersion ratio = 0.981
Pearson's Chi-Squared = 22.557
p-value = 0.487
performance::check_zeroinflation(mod)
# Check for zero-inflation
Observed zeros: 2
Predicted zeros: 3
Ratio: 1.50
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
18.11.3 Effects Analysis
18.11.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.643 | 0.581 | (1.72, 4.07) | 4.423 | < .001 |
Condition2 | 1.135 | 0.379 | (0.59, 2.18) | 0.380 | 0.704 |
Model: Nbr_Entry_Open ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 2.643 | 0.581 | (1.72, 4.07) | 4.423 | < .001 |
Condition2 | 1.135 | 0.379 | (0.59, 2.18) | 0.380 | 0.704 |
Model: Nbr_Entry_Open ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.14 | 1 | 0.700 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.14 | 1 | 0.700 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 102.85 | 105.21 | -49.43 | 98.85 | |||
mod_full | 3 | 104.69 | 108.23 | -49.35 | 98.69 | 0.16 | 1 | 0.690 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 102.85 | 105.21 | -49.43 | 98.85 | |||
mod_full | 3 | 104.69 | 108.23 | -49.35 | 98.69 | 0.16 | 1 | 0.690 |
18.11.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.643 | 0.581 | 23 | 1.678 | 4.164 |
IH | 3 | 0.753 | 23 | 1.784 | 5.044 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.643 | 0.581 | 23 | 1.678 | 4.164 |
IH | 3 | 0.753 | 23 | 1.784 | 5.044 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.881 | 0.294 | 23 | 0.442 | 1.757 | 1 | −0.38 | 0.708 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.881 | 0.294 | 23 | 0.442 | 1.757 | 1 | −0.38 | 0.708 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
18.12 Number of Entries in Closed Arms
18.12.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 11.357 | 4.717 | 22.247 | 0.415 | 6.75 | 4 | 21 | 0.642 | 0.035 | 14 |
IH | 12 | 4.69 | 22 | 0.391 | 6.75 | 4 | 18 | −0.63 | −0.462 | 10 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 11.357 | 4.717 | 22.247 | 0.415 | 6.75 | 4 | 21 | 0.642 | 0.035 | 14 |
IH | 12 | 4.69 | 22 | 0.391 | 6.75 | 4 | 18 | −0.63 | −0.462 | 10 |
18.12.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Nbr_Entry_Closed ~ Condition, data = data,
family = nbinom2("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma | Score_log | Score_spherical |
---|---|---|---|---|---|---|---|---|
151.27 | 152.47 | 154.81 | 1.04e-03 | 4.51 | 11.58 | -3.15 | 0.20 | |
AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma | Score_log | Score_spherical |
---|---|---|---|---|---|---|---|---|
151.27 | 152.47 | 154.81 | 1.04e-03 | 4.51 | 11.58 | -3.15 | 0.20 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
performance::check_overdispersion(mod)
# Overdispersion test
dispersion ratio = 0.911
Pearson's Chi-Squared = 20.963
p-value = 0.583
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
18.12.3 Effects Analysis
18.12.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 11.357 | 1.268 | (9.13, 14.13) | 21.772 | < .001 |
Condition2 | 1.057 | 0.181 | (0.75, 1.48) | 0.321 | 0.748 |
Model: Nbr_Entry_Closed ~ Condition (24 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 11.357 | 1.268 | (9.13, 14.13) | 21.772 | < .001 |
Condition2 | 1.057 | 0.181 | (0.75, 1.48) | 0.321 | 0.748 |
Model: Nbr_Entry_Closed ~ Condition (24 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.750 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.10 | 1 | 0.750 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 144.50 | 146.86 | -70.25 | 140.50 | |||
mod_full | 3 | 146.39 | 149.93 | -70.20 | 140.39 | 0.11 | 1 | 0.740 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 2 | 144.50 | 146.86 | -70.25 | 140.50 | |||
mod_full | 3 | 146.39 | 149.93 | -70.20 | 140.39 | 0.11 | 1 | 0.740 |
18.12.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 11.357 | 1.268 | 23 | 9.016 | 14.307 |
IH | 12 | 1.563 | 23 | 9.166 | 15.711 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 11.357 | 1.268 | 23 | 9.016 | 14.307 |
IH | 12 | 1.563 | 23 | 9.166 | 15.711 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.946 | 0.162 | 23 | 0.664 | 1.35 | 1 | −0.321 | 0.751 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.946 | 0.162 | 23 | 0.664 | 1.35 | 1 | −0.321 | 0.751 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: