12 Weight [Nest]
❖ Data
❖ Description
| Variable | Description |
|---|---|
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Avg_Weight |
Average weight of Pups per Nest at P0 (g) |
| Variable | Description |
|---|---|
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Avg_Weight |
Average weight of Pups per Nest at P0 (g) |
❖ Correlations
12.1 Average Pup weight at P0 (based on nest weight)
12.1.1 Data Exploration
❖ Distribution:
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 1.211 | 0.057 | 0.003 | 0.047 | 0.101 | 1.129 | 1.257 | −1.594 | 2.648 | 4 |
| IH | 1.214 | 0.026 | 0.001 | 0.022 | 0.052 | 1.186 | 1.238 | −0.913 | −1.5 | 3 |
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 1.211 | 0.057 | 0.003 | 0.047 | 0.101 | 1.129 | 1.257 | −1.594 | 2.648 | 4 |
| IH | 1.214 | 0.026 | 0.001 | 0.022 | 0.052 | 1.186 | 1.238 | −0.913 | −1.5 | 3 |
12.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Avg_Weight ~ Condition, data = data, family = gaussian("identity"),
dispformula = ~Condition, REML = FALSE, ziformula = ~0)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE |
|---|---|---|---|---|---|
| -19.20 | 0.80 | -19.42 | 2.53e-06 | 0.04 | |
| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE |
|---|---|---|---|---|---|
| -19.20 | 0.80 | -19.42 | 2.53e-06 | 0.04 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
12.1.3 Effects Analysis
```{r}
glmmTMB(formula = Avg_Weight ~ Condition, data = data, family = gaussian("identity"),
dispformula = ~Condition, REML = FALSE, ziformula = ~0)
```12.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 1.213 | 0.014 | (1.19, 1.24) | 87.449 | < .001 |
| Condition1 | -0.001 | 0.014 | (-0.03, 0.03) | -0.107 | 0.915 |
| Model: Avg_Weight ~ Condition (7 Observations) | |||||
| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 1.213 | 0.014 | (1.19, 1.24) | 87.449 | < .001 |
| Condition1 | -0.001 | 0.014 | (-0.03, 0.03) | -0.107 | 0.915 |
| Model: Avg_Weight ~ Condition (7 Observations) | |||||
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 0.01 | 1 | 0.910 |
| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 0.01 | 1 | 0.910 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | -21.19 | -21.35 | 13.59 | -27.19 | |||
| mod_full | 4 | -19.20 | -19.42 | 13.60 | -27.20 | 0.01 | 1 | 0.910 |
| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | -21.19 | -21.35 | 13.59 | -27.19 | |||
| mod_full | 4 | -19.20 | -19.42 | 13.60 | -27.20 | 0.01 | 1 | 0.910 |
Our LRT() method removes the predictor plus all its interactions
12.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")| Condition | emmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 1.211 | 0.025 | 3 | 1.132 | 1.29 |
| IH | 1.214 | 0.012 | 3 | 1.175 | 1.254 |
| Condition | emmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 1.211 | 0.025 | 3 | 1.132 | 1.29 |
| IH | 1.214 | 0.012 | 3 | 1.175 | 1.254 |
- Confidence level used: 0.95
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| N - IH | −0.003 | 0.028 | 3 | −0.091 | 0.085 | −0.107 | 0.921 |
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| N - IH | −0.003 | 0.028 | 3 | −0.091 | 0.085 | −0.107 | 0.921 |
- Confidence level used: 0.95
❖ Boxplot: