2 Caspase (Total)
❖ Data
❖ Description
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_Tot |
Area of the whole slice (μm²) |
Dens_Tot |
Density of cleaved caspase 3^(+) cells (cells/μm²) |
Prop_C_Tot |
Proportion of cleaved caspase 3^(+) marking in the whole slice |
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_Tot |
Area of the whole slice (μm²) |
Dens_Tot |
Density of cleaved caspase 3^(+) cells (cells/μm²) |
Prop_C_Tot |
Proportion of cleaved caspase 3^(+) marking in the whole slice |
❖ Correlations
2.1 Area of the whole slice
2.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 8.499 | 1.801 | 3.242 | 0.212 | 3.07 | 5.773 | 10.249 | −0.525 | −1.218 | 6 |
IH | 8.452 | 4.749 | 22.556 | 0.562 | 8.909 | 2.527 | 14.124 | −0.158 | 1.357 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 8.499 | 1.801 | 3.242 | 0.212 | 3.07 | 5.773 | 10.249 | −0.525 | −1.218 | 6 |
IH | 8.452 | 4.749 | 22.556 | 0.562 | 8.909 | 2.527 | 14.124 | −0.158 | 1.357 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 7.995 | 2.116 | 4.478 | 0.265 | 3.985 | 5.682 | 11.045 | 0.486 | −1.849 | 8 |
IH | 4.659 | 3.057 | 9.345 | 0.656 | 5.366 | 1.709 | 9.458 | 1.086 | 1.021 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 7.995 | 2.116 | 4.478 | 0.265 | 3.985 | 5.682 | 11.045 | 0.486 | −1.849 | 8 |
IH | 4.659 | 3.057 | 9.345 | 0.656 | 5.366 | 1.709 | 9.458 | 1.086 | 1.021 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.784 | 2.89 | 8.352 | 0.764 | 5.759 | 0.9 | 8.813 | 0.856 | −0.956 | 11 |
IH | 3.178 | 2.355 | 5.547 | 0.741 | 4.145 | 0.913 | 7.234 | 0.909 | −0.711 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 3.784 | 2.89 | 8.352 | 0.764 | 5.759 | 0.9 | 8.813 | 0.856 | −0.956 | 11 |
IH | 3.178 | 2.355 | 5.547 | 0.741 | 4.145 | 0.913 | 7.234 | 0.909 | −0.711 | 8 |
2.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
219.91 | 224.28 | 233.81 | 0.70 | 0.41 | 0.50 | 1.60 | 0.44 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
219.91 | 224.28 | 233.81 | 0.70 | 0.41 | 0.50 | 1.60 | 0.44 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = A_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
215.53 | 219.89 | 229.43 | 0.10 | 0.05 | 0.05 | 1.42 | 1.70 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
215.53 | 219.89 | 229.43 | 0.10 | 0.05 | 0.05 | 1.42 | 1.70 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
2.1.3 Effects Analysis
2.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 5.148 | 0.780 | (3.83, 6.93) | 10.816 | < .001 |
Condition1 | 1.202 | 0.182 | (0.89, 1.62) | 1.213 | 0.225 |
Z1 | 1.659 | 0.187 | (1.33, 2.07) | 4.496 | < .001 |
Z2 | 1.096 | 0.114 | (0.89, 1.34) | 0.885 | 0.376 |
Condition1 * Z1 | 0.966 | 0.109 | (0.77, 1.20) | -0.307 | 0.759 |
Condition1 * Z2 | 1.111 | 0.116 | (0.91, 1.36) | 1.010 | 0.312 |
Model: A_Tot ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 5.148 | 0.780 | (3.83, 6.93) | 10.816 | < .001 |
Condition1 | 1.202 | 0.182 | (0.89, 1.62) | 1.213 | 0.225 |
Z1 | 1.659 | 0.187 | (1.33, 2.07) | 4.496 | < .001 |
Z2 | 1.096 | 0.114 | (0.89, 1.34) | 0.885 | 0.376 |
Condition1 * Z1 | 0.966 | 0.109 | (0.77, 1.20) | -0.307 | 0.759 |
Condition1 * Z2 | 1.111 | 0.116 | (0.91, 1.36) | 1.010 | 0.312 |
Model: A_Tot ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.47 | 1 | 0.230 |
Z | 38.84 | 2 | <0.001 *** |
Condition:Z | 1.15 | 2 | 0.560 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.47 | 1 | 0.230 |
Z | 38.84 | 2 | <0.001 *** |
Condition:Z | 1.15 | 2 | 0.560 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 200.83 | 209.52 | -95.42 | 190.83 | |||
mod_full | 8 | 204.07 | 217.97 | -94.03 | 188.07 | 2.76 | 3 | 0.430 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 200.83 | 209.52 | -95.42 | 190.83 | |||
mod_full | 8 | 204.07 | 217.97 | -94.03 | 188.07 | 2.76 | 3 | 0.430 |
2.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 6.187 | 1.237 | 40 | 4.13 | 9.268 |
IH | 4.284 | 0.976 | 40 | 2.703 | 6.788 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 6.187 | 1.237 | 40 | 4.13 | 9.268 |
IH | 4.284 | 0.976 | 40 | 2.703 | 6.788 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.444 | 0.438 | 40 | 0.783 | 2.665 | 1 | 1.213 | 0.232 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.444 | 0.438 | 40 | 0.783 | 2.665 | 1 | 1.213 | 0.232 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 8.54 | 1.687 | 40 | 5.729 | 12.73 |
Med | 5.644 | 1.044 | 40 | 3.884 | 8.201 |
Post | 2.83 | 0.482 | 40 | 2.007 | 3.992 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 8.54 | 1.687 | 40 | 5.729 | 12.73 |
Med | 5.644 | 1.044 | 40 | 3.884 | 8.201 |
Post | 2.83 | 0.482 | 40 | 2.007 | 3.992 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.513 | 0.292 | 40 | 1.025 | 2.234 | 1 | 2.15 | 0.038 * |
Ant / Post | 3.017 | 0.558 | 40 | 2.076 | 4.385 | 1 | 5.97 | <0.001 *** |
Med / Post | 1.994 | 0.337 | 40 | 1.417 | 2.806 | 1 | 4.083 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.513 | 0.292 | 40 | 1.025 | 2.234 | 1 | 2.15 | 0.038 * |
Ant / Post | 3.017 | 0.558 | 40 | 2.076 | 4.385 | 1 | 5.97 | <0.001 *** |
Med / Post | 1.994 | 0.337 | 40 | 1.417 | 2.806 | 1 | 4.083 | <0.001 *** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 9.915 | 2.552 | 40 | 5.894 | 16.681 |
IH | 7.356 | 2.211 | 40 | 4.007 | 13.504 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 9.915 | 2.552 | 40 | 5.894 | 16.681 |
IH | 7.356 | 2.211 | 40 | 4.007 | 13.504 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 7.535 | 1.787 | 40 | 4.666 | 12.167 |
IH | 4.228 | 1.2 | 40 | 2.382 | 7.502 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 7.535 | 1.787 | 40 | 4.666 | 12.167 |
IH | 4.228 | 1.2 | 40 | 2.382 | 7.502 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.17 | 0.711 | 40 | 2.014 | 4.987 |
IH | 2.528 | 0.643 | 40 | 1.512 | 4.226 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 3.17 | 0.711 | 40 | 2.014 | 4.987 |
IH | 2.528 | 0.643 | 40 | 1.512 | 4.226 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.348 | 0.534 | 40 | 0.605 | 3.003 | 1 | 0.753 | 0.456 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.348 | 0.534 | 40 | 0.605 | 3.003 | 1 | 0.753 | 0.456 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.782 | 0.659 | 40 | 0.844 | 3.763 | 1 | 1.563 | 0.126 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.782 | 0.659 | 40 | 0.844 | 3.763 | 1 | 1.563 | 0.126 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.254 | 0.424 | 40 | 0.633 | 2.483 | 1 | 0.67 | 0.507 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.254 | 0.424 | 40 | 0.633 | 2.483 | 1 | 0.67 | 0.507 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.756 | 0.292 | 40 | 0.346 | 1.652 | 1 | −0.722 | 0.474 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.756 | 0.292 | 40 | 0.346 | 1.652 | 1 | −0.722 | 0.474 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.075 | 0.395 | 40 | 0.512 | 2.258 | 1 | 0.197 | 0.845 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.075 | 0.395 | 40 | 0.512 | 2.258 | 1 | 0.197 | 0.845 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.421 | 0.477 | 40 | 0.721 | 2.802 | 1 | 1.047 | 0.301 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.421 | 0.477 | 40 | 0.721 | 2.802 | 1 | 1.047 | 0.301 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
2.2 Density of Cleaved Caspase 3+ cells (whole slice)
2.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 180.225 | 123.015 | 15,132.722 | 0.683 | 166.972 | 61.979 | 406.598 | 1.47 | 2.595 | 6 |
IH | 274.695 | 118.446 | 14,029.473 | 0.431 | 202.297 | 100.665 | 365.223 | −1.752 | 3.296 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 180.225 | 123.015 | 15,132.722 | 0.683 | 166.972 | 61.979 | 406.598 | 1.47 | 2.595 | 6 |
IH | 274.695 | 118.446 | 14,029.473 | 0.431 | 202.297 | 100.665 | 365.223 | −1.752 | 3.296 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 230.125 | 149.001 | 22,201.247 | 0.647 | 314.226 | 21.376 | 401.676 | −0.268 | −1.3 | 8 |
IH | 149.119 | 92.693 | 8,591.977 | 0.622 | 136.717 | 26.856 | 287.836 | 0.439 | 2.054 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 230.125 | 149.001 | 22,201.247 | 0.647 | 314.226 | 21.376 | 401.676 | −0.268 | −1.3 | 8 |
IH | 149.119 | 92.693 | 8,591.977 | 0.622 | 136.717 | 26.856 | 287.836 | 0.439 | 2.054 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 240.033 | 182.462 | 33,292.413 | 0.76 | 274.869 | 7.406 | 609.499 | 0.712 | 0.164 | 11 |
IH | 266.923 | 246.581 | 60,802.364 | 0.924 | 341.751 | 21.277 | 767.214 | 1.276 | 1.587 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 240.033 | 182.462 | 33,292.413 | 0.76 | 274.869 | 7.406 | 609.499 | 0.712 | 0.164 | 11 |
IH | 266.923 | 246.581 | 60,802.364 | 0.924 | 341.751 | 21.277 | 767.214 | 1.276 | 1.587 | 8 |
2.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Dens_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
555.72 | 560.08 | 569.62 | 0.44 | 0.02 | 0.43 | 112.93 | 0.70 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
555.72 | 560.08 | 569.62 | 0.44 | 0.02 | 0.43 | 112.93 | 0.70 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Dens_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
564.87 | 569.24 | 578.77 | 2.30e-05 | 3.04e-06 | 1.99e-05 | 103.43 | 123.19 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
564.87 | 569.24 | 578.77 | 2.30e-05 | 3.04e-06 | 1.99e-05 | 103.43 | 123.19 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
2.2.3 Effects Analysis
2.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 211.638 | 46.282 | (137.86, 324.89) | 24.487 | < .001 |
Condition1 | 0.926 | 0.202 | (0.60, 1.42) | -0.352 | 0.725 |
Z1 | 1.119 | 0.208 | (0.78, 1.61) | 0.603 | 0.547 |
Z2 | 0.939 | 0.169 | (0.66, 1.34) | -0.351 | 0.725 |
Condition1 * Z1 | 0.832 | 0.154 | (0.58, 1.20) | -0.994 | 0.320 |
Condition1 * Z2 | 1.116 | 0.203 | (0.78, 1.60) | 0.605 | 0.545 |
Model: Dens_Tot ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 211.638 | 46.282 | (137.86, 324.89) | 24.487 | < .001 |
Condition1 | 0.926 | 0.202 | (0.60, 1.42) | -0.352 | 0.725 |
Z1 | 1.119 | 0.208 | (0.78, 1.61) | 0.603 | 0.547 |
Z2 | 0.939 | 0.169 | (0.66, 1.34) | -0.351 | 0.725 |
Condition1 * Z1 | 0.832 | 0.154 | (0.58, 1.20) | -0.994 | 0.320 |
Condition1 * Z2 | 1.116 | 0.203 | (0.78, 1.60) | 0.605 | 0.545 |
Model: Dens_Tot ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.12 | 1 | 0.720 |
Z | 0.36 | 2 | 0.830 |
Condition:Z | 0.99 | 2 | 0.610 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.12 | 1 | 0.720 |
Z | 0.36 | 2 | 0.830 |
Condition:Z | 0.99 | 2 | 0.610 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 540.59 | 549.28 | -265.30 | 530.59 | |||
mod_full | 8 | 545.35 | 559.25 | -264.68 | 529.35 | 1.24 | 3 | 0.740 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 540.59 | 549.28 | -265.30 | 530.59 | |||
mod_full | 8 | 545.35 | 559.25 | -264.68 | 529.35 | 1.24 | 3 | 0.740 |
2.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 195.96 | 56.502 | 40 | 109.417 | 350.954 |
IH | 228.571 | 75.159 | 40 | 117.598 | 444.264 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 195.96 | 56.502 | 40 | 109.417 | 350.954 |
IH | 228.571 | 75.159 | 40 | 117.598 | 444.264 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.857 | 0.375 | 40 | 0.354 | 2.075 | 1 | −0.352 | 0.727 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.857 | 0.375 | 40 | 0.354 | 2.075 | 1 | −0.352 | 0.727 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 236.768 | 71.688 | 40 | 128.4 | 436.598 |
Med | 198.691 | 57.349 | 40 | 110.874 | 356.061 |
Post | 201.504 | 51.328 | 40 | 120.421 | 337.184 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 236.768 | 71.688 | 40 | 128.4 | 436.598 |
Med | 198.691 | 57.349 | 40 | 110.874 | 356.061 |
Post | 201.504 | 51.328 | 40 | 120.421 | 337.184 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.192 | 0.385 | 40 | 0.62 | 2.289 | 1 | 0.543 | 0.590 |
Ant / Post | 1.175 | 0.364 | 40 | 0.628 | 2.198 | 1 | 0.521 | 0.606 |
Med / Post | 0.986 | 0.294 | 40 | 0.54 | 1.801 | 1 | −0.047 | 0.963 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.192 | 0.385 | 40 | 0.62 | 2.289 | 1 | 0.543 | 0.590 |
Ant / Post | 1.175 | 0.364 | 40 | 0.628 | 2.198 | 1 | 0.521 | 0.606 |
Med / Post | 0.986 | 0.294 | 40 | 0.54 | 1.801 | 1 | −0.047 | 0.963 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 182.496 | 72.076 | 40 | 82.147 | 405.426 |
IH | 307.179 | 139.779 | 40 | 122.457 | 770.546 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 182.496 | 72.076 | 40 | 82.147 | 405.426 |
IH | 307.179 | 139.779 | 40 | 122.457 | 770.546 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 205.4 | 72.627 | 40 | 100.517 | 419.722 |
IH | 192.2 | 88.227 | 40 | 76.004 | 486.04 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 205.4 | 72.627 | 40 | 100.517 | 419.722 |
IH | 192.2 | 88.227 | 40 | 76.004 | 486.04 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 200.748 | 66.757 | 40 | 102.509 | 393.132 |
IH | 202.263 | 77.281 | 40 | 93.443 | 437.811 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 200.748 | 66.757 | 40 | 102.509 | 393.132 |
IH | 202.263 | 77.281 | 40 | 93.443 | 437.811 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.594 | 0.356 | 40 | 0.177 | 1.996 | 1 | −0.869 | 0.390 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.594 | 0.356 | 40 | 0.177 | 1.996 | 1 | −0.869 | 0.390 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.069 | 0.622 | 40 | 0.33 | 3.462 | 1 | 0.114 | 0.910 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.069 | 0.622 | 40 | 0.33 | 3.462 | 1 | 0.114 | 0.910 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.993 | 0.5 | 40 | 0.359 | 2.746 | 1 | −0.015 | 0.988 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.993 | 0.5 | 40 | 0.359 | 2.746 | 1 | −0.015 | 0.988 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.556 | 0.364 | 40 | 0.148 | 2.09 | 1 | −0.896 | 0.376 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.556 | 0.364 | 40 | 0.148 | 2.09 | 1 | −0.896 | 0.376 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.599 | 0.358 | 40 | 0.179 | 2.002 | 1 | −0.859 | 0.395 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.599 | 0.358 | 40 | 0.179 | 2.002 | 1 | −0.859 | 0.395 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.077 | 0.634 | 40 | 0.328 | 3.538 | 1 | 0.126 | 0.901 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.077 | 0.634 | 40 | 0.328 | 3.538 | 1 | 0.126 | 0.901 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
2.3 Proportion of Cleaved Caspase 3+ marking (whole slice)
2.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.01 | 0.007 | 0 | 0.686 | 0.01 | 0.003 | 0.021 | 1.002 | 0.847 | 6 |
IH | 0.016 | 0.007 | 0 | 0.437 | 0.011 | 0.005 | 0.02 | −1.919 | 3.75 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.01 | 0.007 | 0 | 0.686 | 0.01 | 0.003 | 0.021 | 1.002 | 0.847 | 6 |
IH | 0.016 | 0.007 | 0 | 0.437 | 0.011 | 0.005 | 0.02 | −1.919 | 3.75 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.013 | 0.01 | 0 | 0.732 | 0.02 | 0.001 | 0.027 | 0.171 | −1.156 | 8 |
IH | 0.008 | 0.006 | 0 | 0.722 | 0.008 | 0.001 | 0.017 | 1.09 | 2.625 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.013 | 0.01 | 0 | 0.732 | 0.02 | 0.001 | 0.027 | 0.171 | −1.156 | 8 |
IH | 0.008 | 0.006 | 0 | 0.722 | 0.008 | 0.001 | 0.017 | 1.09 | 2.625 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.013 | 0.012 | 0 | 0.859 | 0.014 | 0 | 0.041 | 1.334 | 2.455 | 11 |
IH | 0.015 | 0.015 | 0 | 0.993 | 0.02 | 0.001 | 0.047 | 1.416 | 2.028 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.013 | 0.012 | 0 | 0.859 | 0.014 | 0 | 0.041 | 1.334 | 2.455 | 11 |
IH | 0.015 | 0.015 | 0 | 0.993 | 0.02 | 0.001 | 0.047 | 1.416 | 2.028 | 8 |
2.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = beta_family("logit"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-269.79 | -265.42 | -255.89 | 0.62 | 0.07 | 0.59 | 6.27e-03 | 221.78 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-269.79 | -265.42 | -255.89 | 0.62 | 0.07 | 0.59 | 6.27e-03 | 221.78 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_Tot ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-252.05 | -247.68 | -238.14 | 1.00 | 0.14 | 1.00 | 6.14e-03 | 7.31e-03 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-252.05 | -247.68 | -238.14 | 1.00 | 0.14 | 1.00 | 6.14e-03 | 7.31e-03 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
2.3.3 Effects Analysis
2.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.013 | 0.003 | (8.30e-03, 0.02) | -19.459 | < .001 |
Condition1 | 0.884 | 0.193 | (0.58, 1.36) | -0.564 | 0.573 |
Z1 | 1.014 | 0.146 | (0.77, 1.34) | 0.100 | 0.920 |
Z2 | 0.971 | 0.138 | (0.73, 1.28) | -0.206 | 0.837 |
Condition1 * Z1 | 0.735 | 0.107 | (0.55, 0.98) | -2.115 | 0.034 * |
Condition1 * Z2 | 1.269 | 0.180 | (0.96, 1.68) | 1.676 | 0.094 |
Model: Prop_C_Tot ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.013 | 0.003 | (8.30e-03, 0.02) | -19.459 | < .001 |
Condition1 | 0.884 | 0.193 | (0.58, 1.36) | -0.564 | 0.573 |
Z1 | 1.014 | 0.146 | (0.77, 1.34) | 0.100 | 0.920 |
Z2 | 0.971 | 0.138 | (0.73, 1.28) | -0.206 | 0.837 |
Condition1 * Z1 | 0.735 | 0.107 | (0.55, 0.98) | -2.115 | 0.034 * |
Condition1 * Z2 | 1.269 | 0.180 | (0.96, 1.68) | 1.676 | 0.094 |
Model: Prop_C_Tot ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.32 | 1 | 0.570 |
Z | 0.04 | 2 | 0.980 |
Condition:Z | 4.68 | 2 | 0.100 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.32 | 1 | 0.570 |
Z | 0.04 | 2 | 0.980 |
Condition:Z | 4.68 | 2 | 0.100 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -283.57 | -274.88 | 146.78 | -293.57 | |||
mod_full | 8 | -282.01 | -268.11 | 149.01 | -298.01 | 4.44 | 3 | 0.220 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -283.57 | -274.88 | 146.78 | -293.57 | |||
mod_full | 8 | -282.01 | -268.11 | 149.01 | -298.01 | 4.44 | 3 | 0.220 |
2.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.011 | 0.003 | 40 | 0.006 | 0.02 |
IH | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.011 | 0.003 | 40 | 0.006 | 0.02 |
IH | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.782 | 0.341 | 40 | 0.324 | 1.887 | 1 | −0.564 | 0.576 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.782 | 0.341 | 40 | 0.324 | 1.887 | 1 | −0.564 | 0.576 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.013 | 0.004 | 40 | 0.007 | 0.022 |
Med | 0.012 | 0.003 | 40 | 0.007 | 0.021 |
Post | 0.013 | 0.003 | 40 | 0.008 | 0.021 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.013 | 0.004 | 40 | 0.007 | 0.022 |
Med | 0.012 | 0.003 | 40 | 0.007 | 0.021 |
Post | 0.013 | 0.003 | 40 | 0.008 | 0.021 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.045 | 0.269 | 40 | 0.621 | 1.758 | 1 | 0.17 | 0.866 |
Ant / Post | 0.999 | 0.228 | 40 | 0.631 | 1.583 | 1 | −0.003 | 0.998 |
Med / Post | 0.957 | 0.216 | 40 | 0.607 | 1.509 | 1 | −0.196 | 0.845 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.045 | 0.269 | 40 | 0.621 | 1.758 | 1 | 0.17 | 0.866 |
Ant / Post | 0.999 | 0.228 | 40 | 0.631 | 1.583 | 1 | −0.003 | 0.998 |
Med / Post | 0.957 | 0.216 | 40 | 0.607 | 1.509 | 1 | −0.196 | 0.845 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.003 | 40 | 0.004 | 0.018 |
IH | 0.02 | 0.008 | 40 | 0.009 | 0.042 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.003 | 40 | 0.004 | 0.018 |
IH | 0.02 | 0.008 | 40 | 0.009 | 0.042 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
IH | 0.011 | 0.005 | 40 | 0.005 | 0.025 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
IH | 0.011 | 0.005 | 40 | 0.005 | 0.025 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.012 | 0.004 | 40 | 0.006 | 0.023 |
IH | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.012 | 0.004 | 40 | 0.006 | 0.023 |
IH | 0.014 | 0.005 | 40 | 0.007 | 0.027 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.423 | 0.231 | 40 | 0.14 | 1.274 | 1 | −1.577 | 0.123 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.423 | 0.231 | 40 | 0.14 | 1.274 | 1 | −1.577 | 0.123 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.259 | 0.667 | 40 | 0.432 | 3.674 | 1 | 0.436 | 0.666 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.259 | 0.667 | 40 | 0.432 | 3.674 | 1 | 0.436 | 0.666 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.899 | 0.421 | 40 | 0.349 | 2.314 | 1 | −0.227 | 0.821 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.899 | 0.421 | 40 | 0.349 | 2.314 | 1 | −0.227 | 0.821 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.336 | 0.174 | 40 | 0.118 | 0.956 | 1 | −2.107 | 0.041 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.336 | 0.174 | 40 | 0.118 | 0.956 | 1 | −2.107 | 0.041 * |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.47 | 0.217 | 40 | 0.185 | 1.197 | 1 | −1.632 | 0.111 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.47 | 0.217 | 40 | 0.185 | 1.197 | 1 | −1.632 | 0.111 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.401 | 0.63 | 40 | 0.565 | 3.475 | 1 | 0.749 | 0.458 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.401 | 0.63 | 40 | 0.565 | 3.475 | 1 | 0.749 | 0.458 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot: