8 Thickness
❖ Data
❖ Description
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Stage |
Developmental stage |
Thick_EGL |
EGL thickness (µm) |
Thick_MLPL |
ML+PL thickness (µm) |
Thick_IGL |
IGL thickness (µm) |
Thick_Total |
Total thickness of the cerebellar cortex (µm) |
Variable | Description |
---|---|
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Stage |
Developmental stage |
Thick_EGL |
EGL thickness (µm) |
Thick_MLPL |
ML+PL thickness (µm) |
Thick_IGL |
IGL thickness (µm) |
Thick_Total |
Total thickness of the cerebellar cortex (µm) |
❖ Correlations
8.1 EGL Thickness [P12 only]
8.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 33.3 | 13.148 | 172.864 | 0.395 | 14.155 | 9.68 | 122.425 | 2.002 | 7.403 | 444 |
IH | 41.045 | 12.854 | 165.216 | 0.313 | 16.23 | 14.526 | 91.649 | 0.89 | 0.65 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 33.3 | 13.148 | 172.864 | 0.395 | 14.155 | 9.68 | 122.425 | 2.002 | 7.403 | 444 |
IH | 41.045 | 12.854 | 165.216 | 0.313 | 16.23 | 14.526 | 91.649 | 0.89 | 0.65 | 671 |
8.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Thick_EGL ~ Condition + (1 | Mouse) + (1 |
data = data, family = Gamma("log"), REML = TRUE,
Slice), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
8483.49 | 8483.54 | 8508.57 | 0.31 | 0.08 | 0.25 | 11.55 | 0.29 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
8483.49 | 8483.54 | 8508.57 | 0.31 | 0.08 | 0.25 | 11.55 | 0.29 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Thick_EGL ~ Condition + (1 | Mouse) + (1 |
data = data, family = gaussian("log"), REML = TRUE,
Slice), ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
8713.36 | 8713.41 | 8738.44 | 2.78e-04 | 7.12e-05 | 2.06e-04 | 11.55 | 11.65 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
8713.36 | 8713.41 | 8738.44 | 2.78e-04 | 7.12e-05 | 2.06e-04 | 11.55 | 11.65 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
8.1.3 Effects Analysis
8.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 37.901 | 1.818 | (34.50, 41.64) | 75.782 | < .001 |
Condition1 | 0.904 | 0.043 | (0.82, 0.99) | -2.108 | 0.035 * |
Model: Thick_EGL ~ Condition (1115 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 37.901 | 1.818 | (34.50, 41.64) | 75.782 | < .001 |
Condition1 | 0.904 | 0.043 | (0.82, 0.99) | -2.108 | 0.035 * |
Model: Thick_EGL ~ Condition (1115 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.44 | 1 | 0.040 * |
term | statistic | df | p.value |
---|---|---|---|
Condition | 4.44 | 1 | 0.040 * |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 4 | 8477.18 | 8497.25 | -4234.59 | 8469.18 | |||
mod_full | 5 | 8474.66 | 8499.74 | -4232.33 | 8464.66 | 4.52 | 1 | 0.030 * |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 4 | 8477.18 | 8497.25 | -4234.59 | 8469.18 | |||
mod_full | 5 | 8474.66 | 8499.74 | -4232.33 | 8464.66 | 4.52 | 1 | 0.030 * |
8.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 34.247 | 2.465 | 1,112 | 29.736 | 39.442 |
IH | 41.945 | 2.668 | 1,112 | 37.023 | 47.52 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 34.247 | 2.465 | 1,112 | 29.736 | 39.442 |
IH | 41.945 | 2.668 | 1,112 | 37.023 | 47.52 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.816 | 0.079 | 1,112 | 0.676 | 0.986 | 1 | −2.108 | 0.035 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.816 | 0.079 | 1,112 | 0.676 | 0.986 | 1 | −2.108 | 0.035 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
8.2 ML+PL Thickness [P12 + P21]
8.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 96.885 | 22.546 | 508.333 | 0.233 | 28.695 | 43.365 | 192.039 | 0.621 | 0.749 | 444 |
IH | 49.156 | 15.736 | 247.632 | 0.32 | 22.041 | 21.885 | 109.143 | 0.968 | 0.665 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 96.885 | 22.546 | 508.333 | 0.233 | 28.695 | 43.365 | 192.039 | 0.621 | 0.749 | 444 |
IH | 49.156 | 15.736 | 247.632 | 0.32 | 22.041 | 21.885 | 109.143 | 0.968 | 0.665 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 162.484 | 36.25 | 1,314.093 | 0.223 | 45.236 | 76.871 | 345.966 | 0.536 | 1.267 | 641 |
IH | 150.704 | 35.029 | 1,227.055 | 0.232 | 45.784 | 67.548 | 271.045 | 0.398 | 0.162 | 594 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 162.484 | 36.25 | 1,314.093 | 0.223 | 45.236 | 76.871 | 345.966 | 0.536 | 1.267 | 641 |
IH | 150.704 | 35.029 | 1,227.055 | 0.232 | 45.784 | 67.548 | 271.045 | 0.398 | 0.162 | 594 |
8.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Thick_MLPL ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = Gamma("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
21340.99 | 21341.04 | 21381.32 | 0.84 | 0.75 | 0.35 | 26.55 | 0.22 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
21340.99 | 21341.04 | 21381.32 | 0.84 | 0.75 | 0.35 | 26.55 | 0.22 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Thick_MLPL ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = gaussian("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
22248.83 | 22248.88 | 22289.17 | 3.42e-04 | 3.08e-04 | 3.41e-05 | 26.53 | 26.74 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
22248.83 | 22248.88 | 22289.17 | 3.42e-04 | 3.08e-04 | 3.41e-05 | 26.53 | 26.74 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
8.2.3 Effects Analysis
8.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 106.909 | 4.528 | (98.39, 116.16) | 110.313 | < .001 |
Condition1 | 1.179 | 0.050 | (1.09, 1.28) | 3.898 | < .001 |
Stage1 | 0.674 | 0.029 | (0.62, 0.73) | -9.300 | < .001 |
Condition1 * Stage1 | 1.132 | 0.048 | (1.04, 1.23) | 2.933 | 0.003 ** |
Model: Thick_MLPL ~ Condition * Stage (2350 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 106.909 | 4.528 | (98.39, 116.16) | 110.313 | < .001 |
Condition1 | 1.179 | 0.050 | (1.09, 1.28) | 3.898 | < .001 |
Stage1 | 0.674 | 0.029 | (0.62, 0.73) | -9.300 | < .001 |
Condition1 * Stage1 | 1.132 | 0.048 | (1.04, 1.23) | 2.933 | 0.003 ** |
Model: Thick_MLPL ~ Condition * Stage (2350 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 15.19 | 1 | <0.001 *** |
Stage | 86.49 | 1 | <0.001 *** |
Condition:Stage | 8.60 | 1 | 0.003 ** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 15.19 | 1 | <0.001 *** |
Stage | 86.49 | 1 | <0.001 *** |
Condition:Stage | 8.60 | 1 | 0.003 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 21335.55 | 21364.36 | -10662.78 | 21325.55 | |||
mod_full | 7 | 21322.21 | 21362.55 | -10654.11 | 21308.21 | 17.34 | 2 | <0.001 *** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 21335.55 | 21364.36 | -10662.78 | 21325.55 | |||
mod_full | 7 | 21322.21 | 21362.55 | -10654.11 | 21308.21 | 17.34 | 2 | <0.001 *** |
8.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 126.097 | 7.79 | 2,347 | 111.71 | 142.337 |
IH | 90.641 | 5.253 | 2,347 | 80.904 | 101.549 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 126.097 | 7.79 | 2,347 | 111.71 | 142.337 |
IH | 90.641 | 5.253 | 2,347 | 80.904 | 101.549 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.391 | 0.118 | 2,347 | 1.178 | 1.643 | 1 | 3.898 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.391 | 0.118 | 2,347 | 1.178 | 1.643 | 1 | 3.898 | <0.001 *** |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 72.106 | 4.192 | 2,347 | 64.337 | 80.814 |
P21 | 158.51 | 9.764 | 2,347 | 140.475 | 178.861 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 72.106 | 4.192 | 2,347 | 64.337 | 80.814 |
P21 | 158.51 | 9.764 | 2,347 | 140.475 | 178.861 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.455 | 0.039 | 2,347 | 0.385 | 0.537 | 1 | −9.3 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.455 | 0.039 | 2,347 | 0.385 | 0.537 | 1 | −9.3 | <0.001 *** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 96.296 | 8.447 | 2,347 | 81.078 | 114.37 |
IH | 53.993 | 4.121 | 2,347 | 46.487 | 62.71 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 96.296 | 8.447 | 2,347 | 81.078 | 114.37 |
IH | 53.993 | 4.121 | 2,347 | 46.487 | 62.71 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 165.121 | 14.365 | 2,347 | 139.223 | 195.835 |
IH | 152.164 | 13.271 | 2,347 | 128.243 | 180.547 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 165.121 | 14.365 | 2,347 | 139.223 | 195.835 |
IH | 152.164 | 13.271 | 2,347 | 128.243 | 180.547 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.783 | 0.207 | 2,347 | 1.42 | 2.24 | 1 | 4.976 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.783 | 0.207 | 2,347 | 1.42 | 2.24 | 1 | 4.976 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.085 | 0.134 | 2,347 | 0.852 | 1.382 | 1 | 0.663 | 0.507 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.085 | 0.134 | 2,347 | 0.852 | 1.382 | 1 | 0.663 | 0.507 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.644 | 0.278 | 2,347 | 1.179 | 2.291 | 1 | 2.933 | 0.003 ** |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.644 | 0.278 | 2,347 | 1.179 | 2.291 | 1 | 2.933 | 0.003 ** |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
8.3 (I)GL Thickness [P12 + P21]
8.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 130.9 | 41.978 | 1,762.194 | 0.321 | 45.561 | 57.018 | 401.257 | 1.368 | 4.015 | 444 |
IH | 76.497 | 26.953 | 726.449 | 0.352 | 35.073 | 11.558 | 182.426 | 0.493 | 0.268 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 130.9 | 41.978 | 1,762.194 | 0.321 | 45.561 | 57.018 | 401.257 | 1.368 | 4.015 | 444 |
IH | 76.497 | 26.953 | 726.449 | 0.352 | 35.073 | 11.558 | 182.426 | 0.493 | 0.268 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 164.272 | 49.706 | 2,470.638 | 0.303 | 69.291 | 52.526 | 324.071 | 0.493 | −0.323 | 641 |
IH | 146.351 | 41.739 | 1,742.103 | 0.285 | 51.457 | 61.27 | 303.049 | 0.737 | 0.673 | 594 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 164.272 | 49.706 | 2,470.638 | 0.303 | 69.291 | 52.526 | 324.071 | 0.493 | −0.323 | 641 |
IH | 146.351 | 41.739 | 1,742.103 | 0.285 | 51.457 | 61.27 | 303.049 | 0.737 | 0.673 | 594 |
8.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Thick_IGL ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = Gamma("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
23529.09 | 23529.14 | 23569.43 | 0.55 | 0.44 | 0.20 | 37.33 | 0.30 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
23529.09 | 23529.14 | 23569.43 | 0.55 | 0.44 | 0.20 | 37.33 | 0.30 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Thick_IGL ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = gaussian("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
23865.57 | 23865.62 | 23905.91 | 7.74e-05 | 6.14e-05 | 1.59e-05 | 37.29 | 37.62 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
23865.57 | 23865.62 | 23905.91 | 7.74e-05 | 6.14e-05 | 1.59e-05 | 37.29 | 37.62 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
8.3.3 Effects Analysis
8.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 128.673 | 3.494 | (122.00, 135.71) | 178.872 | < .001 |
Condition1 | 1.174 | 0.032 | (1.11, 1.24) | 5.910 | < .001 |
Stage1 | 0.814 | 0.022 | (0.77, 0.86) | -7.583 | < .001 |
Condition1 * Stage1 | 1.102 | 0.030 | (1.04, 1.16) | 3.568 | < .001 |
Model: Thick_IGL ~ Condition * Stage (2350 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 128.673 | 3.494 | (122.00, 135.71) | 178.872 | < .001 |
Condition1 | 1.174 | 0.032 | (1.11, 1.24) | 5.910 | < .001 |
Stage1 | 0.814 | 0.022 | (0.77, 0.86) | -7.583 | < .001 |
Condition1 * Stage1 | 1.102 | 0.030 | (1.04, 1.16) | 3.568 | < .001 |
Model: Thick_IGL ~ Condition * Stage (2350 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 34.93 | 1 | <0.001 *** |
Stage | 57.51 | 1 | <0.001 *** |
Condition:Stage | 12.73 | 1 | <0.001 *** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 34.93 | 1 | <0.001 *** |
Stage | 57.51 | 1 | <0.001 *** |
Condition:Stage | 12.73 | 1 | <0.001 *** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 23526.85 | 23555.66 | -11758.42 | 23516.85 | |||
mod_full | 7 | 23506.71 | 23547.04 | -11746.35 | 23492.71 | 24.14 | 2 | <0.001 *** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 23526.85 | 23555.66 | -11758.42 | 23516.85 | |||
mod_full | 7 | 23506.71 | 23547.04 | -11746.35 | 23492.71 | 24.14 | 2 | <0.001 *** |
8.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 151.055 | 5.922 | 2,347 | 139.878 | 163.125 |
IH | 109.608 | 4.116 | 2,347 | 101.826 | 117.985 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 151.055 | 5.922 | 2,347 | 139.878 | 163.125 |
IH | 109.608 | 4.116 | 2,347 | 101.826 | 117.985 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.378 | 0.075 | 2,347 | 1.239 | 1.533 | 1 | 5.91 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.378 | 0.075 | 2,347 | 1.239 | 1.533 | 1 | 5.91 | <0.001 *** |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 104.744 | 4.024 | 2,347 | 97.142 | 112.94 |
P21 | 158.07 | 6.063 | 2,347 | 146.617 | 170.417 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 104.744 | 4.024 | 2,347 | 97.142 | 112.94 |
P21 | 158.07 | 6.063 | 2,347 | 146.617 | 170.417 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.663 | 0.036 | 2,347 | 0.596 | 0.737 | 1 | −7.583 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.663 | 0.036 | 2,347 | 0.596 | 0.737 | 1 | −7.583 | <0.001 *** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 135.457 | 7.744 | 2,347 | 121.092 | 151.527 |
IH | 80.994 | 4.151 | 2,347 | 73.25 | 89.556 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 135.457 | 7.744 | 2,347 | 121.092 | 151.527 |
IH | 80.994 | 4.151 | 2,347 | 73.25 | 89.556 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 168.448 | 9.034 | 2,347 | 151.632 | 187.129 |
IH | 148.331 | 8.138 | 2,347 | 133.201 | 165.18 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 168.448 | 9.034 | 2,347 | 151.632 | 187.129 |
IH | 148.331 | 8.138 | 2,347 | 133.201 | 165.18 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.672 | 0.128 | 2,347 | 1.439 | 1.944 | 1 | 6.704 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.672 | 0.128 | 2,347 | 1.439 | 1.944 | 1 | 6.704 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.136 | 0.087 | 2,347 | 0.977 | 1.32 | 1 | 1.657 | 0.098 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.136 | 0.087 | 2,347 | 0.977 | 1.32 | 1 | 1.657 | 0.098 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.473 | 0.16 | 2,347 | 1.191 | 1.822 | 1 | 3.568 | <0.001 *** |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.473 | 0.16 | 2,347 | 1.191 | 1.822 | 1 | 3.568 | <0.001 *** |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
8.4 Total Thickness [P12 + P21]
8.4.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 261.085 | 56.63 | 3,206.931 | 0.217 | 72.106 | 149.2 | 530.792 | 0.797 | 0.895 | 444 |
IH | 166.698 | 38.866 | 1,510.594 | 0.233 | 52.218 | 77.111 | 316.283 | 0.711 | 0.414 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 261.085 | 56.63 | 3,206.931 | 0.217 | 72.106 | 149.2 | 530.792 | 0.797 | 0.895 | 444 |
IH | 166.698 | 38.866 | 1,510.594 | 0.233 | 52.218 | 77.111 | 316.283 | 0.711 | 0.414 | 671 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 326.756 | 69.203 | 4,789.008 | 0.212 | 97.179 | 160.159 | 600.969 | 0.574 | 0.352 | 641 |
IH | 297.055 | 59.572 | 3,548.787 | 0.201 | 75.407 | 159.96 | 509.278 | 0.532 | 0.608 | 594 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 326.756 | 69.203 | 4,789.008 | 0.212 | 97.179 | 160.159 | 600.969 | 0.574 | 0.352 | 641 |
IH | 297.055 | 59.572 | 3,548.787 | 0.201 | 75.407 | 159.96 | 509.278 | 0.532 | 0.608 | 594 |
8.4.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Thick_Total ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = Gamma("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
24902.97 | 24903.01 | 24943.30 | 0.69 | 0.55 | 0.32 | 50.83 | 0.19 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
24902.97 | 24903.01 | 24943.30 | 0.69 | 0.55 | 0.32 | 50.83 | 0.19 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Thick_Total ~ Condition * Stage + (1 | Mouse) +
1 | Slice), data = data, family = gaussian("log"), REML = TRUE,
(ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
25329.50 | 25329.55 | 25369.83 | 3.06e-05 | 2.44e-05 | 6.12e-06 | 50.81 | 51.26 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
25329.50 | 25329.55 | 25369.83 | 3.06e-05 | 2.44e-05 | 6.12e-06 | 50.81 | 51.26 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
8.4.3 Effects Analysis
8.4.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 263.232 | 7.714 | (248.54, 278.79) | 190.177 | < .001 |
Condition1 | 1.137 | 0.033 | (1.07, 1.20) | 4.378 | < .001 |
Stage1 | 0.830 | 0.024 | (0.78, 0.88) | -6.380 | < .001 |
Condition1 * Stage1 | 1.078 | 0.032 | (1.02, 1.14) | 2.569 | 0.010 ** |
Model: Thick_Total ~ Condition * Stage (2350 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 263.232 | 7.714 | (248.54, 278.79) | 190.177 | < .001 |
Condition1 | 1.137 | 0.033 | (1.07, 1.20) | 4.378 | < .001 |
Stage1 | 0.830 | 0.024 | (0.78, 0.88) | -6.380 | < .001 |
Condition1 * Stage1 | 1.078 | 0.032 | (1.02, 1.14) | 2.569 | 0.010 ** |
Model: Thick_Total ~ Condition * Stage (2350 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 19.16 | 1 | <0.001 *** |
Stage | 40.70 | 1 | <0.001 *** |
Condition:Stage | 6.60 | 1 | 0.010 ** |
term | statistic | df | p.value |
---|---|---|---|
Condition | 19.16 | 1 | <0.001 *** |
Stage | 40.70 | 1 | <0.001 *** |
Condition:Stage | 6.60 | 1 | 0.010 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 24895.17 | 24923.98 | -12442.58 | 24885.17 | |||
mod_full | 7 | 24881.22 | 24921.56 | -12433.61 | 24867.22 | 17.95 | 2 | <0.001 *** |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 24895.17 | 24923.98 | -12442.58 | 24885.17 | |||
mod_full | 7 | 24881.22 | 24921.56 | -12433.61 | 24867.22 | 17.95 | 2 | <0.001 *** |
8.4.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 299.255 | 12.757 | 2,347 | 275.256 | 325.346 |
IH | 231.545 | 9.311 | 2,347 | 213.987 | 250.544 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 299.255 | 12.757 | 2,347 | 275.256 | 325.346 |
IH | 231.545 | 9.311 | 2,347 | 213.987 | 250.544 |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.292 | 0.076 | 2,347 | 1.152 | 1.45 | 1 | 4.378 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.292 | 0.076 | 2,347 | 1.152 | 1.45 | 1 | 4.378 | <0.001 *** |
- Results are averaged over the levels of: Stage
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 218.361 | 8.853 | 2,347 | 201.672 | 236.431 |
P21 | 317.323 | 13.425 | 2,347 | 292.06 | 344.772 |
Stage | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
P12 | 218.361 | 8.853 | 2,347 | 201.672 | 236.431 |
P21 | 317.323 | 13.425 | 2,347 | 292.06 | 344.772 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.688 | 0.04 | 2,347 | 0.613 | 0.772 | 1 | −6.38 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
P12 / P21 | 0.688 | 0.04 | 2,347 | 0.613 | 0.772 | 1 | −6.38 | <0.001 *** |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 267.643 | 16.317 | 2,347 | 237.484 | 301.632 |
IH | 178.153 | 9.523 | 2,347 | 160.424 | 197.841 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 267.643 | 16.317 | 2,347 | 237.484 | 301.632 |
IH | 178.153 | 9.523 | 2,347 | 160.424 | 197.841 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 334.601 | 19.933 | 2,347 | 297.709 | 376.065 |
IH | 300.938 | 18.083 | 2,347 | 267.488 | 338.571 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 334.601 | 19.933 | 2,347 | 297.709 | 376.065 |
IH | 300.938 | 18.083 | 2,347 | 267.488 | 338.571 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.502 | 0.122 | 2,347 | 1.281 | 1.761 | 1 | 5.02 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.502 | 0.122 | 2,347 | 1.281 | 1.761 | 1 | 5.02 | <0.001 *** |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.112 | 0.094 | 2,347 | 0.942 | 1.313 | 1 | 1.253 | 0.210 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.112 | 0.094 | 2,347 | 0.942 | 1.313 | 1 | 1.253 | 0.210 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.351 | 0.158 | 2,347 | 1.074 | 1.7 | 1 | 2.569 | 0.010 * |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.351 | 0.158 | 2,347 | 1.074 | 1.7 | 1 | 2.569 | 0.010 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: