1 Reactive Oxygen Species
❖ Data
❖ Description
| Variable | Description |
|---|---|
| Mouse |
Mouse unique identifier |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| ROS_perc |
ROS (% of control) |
| Variable | Description |
|---|---|
| Mouse |
Mouse unique identifier |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| ROS_perc |
ROS (% of control) |
❖ Correlations
1.1 ROS (as % increase vs control)
1.1.1 Data Exploration
❖ Distribution:
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 100 | 8.806 | 77.542 | 0.088 | 16.161 | 88.028 | 107.809 | −0.745 | −2.14 | 5 |
| IH | 119.99 | 19.128 | 365.87 | 0.159 | 27.275 | 93.946 | 165.286 | 0.997 | 1.29 | 13 |
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 100 | 8.806 | 77.542 | 0.088 | 16.161 | 88.028 | 107.809 | −0.745 | −2.14 | 5 |
| IH | 119.99 | 19.128 | 365.87 | 0.159 | 27.275 | 93.946 | 165.286 | 0.997 | 1.29 | 13 |
1.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = ROS_perc ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
|---|---|---|---|---|---|---|
| 163.24 | 164.95 | 165.91 | 7.01e-03 | 16.16 | 0.14 | |
| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
|---|---|---|---|---|---|---|
| 163.24 | 164.95 | 165.91 | 7.01e-03 | 16.16 | 0.14 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = ROS_perc ~ Condition, data = data, family = gaussian("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
|---|---|---|---|---|---|---|
| 165.29 | 167.01 | 167.96 | 7.01e-03 | 16.16 | 17.14 | |
| AIC | AICc | BIC | R2_conditional | R2_marginal | RMSE | Sigma |
|---|---|---|---|---|---|---|
| 165.29 | 167.01 | 167.96 | 7.01e-03 | 16.16 | 17.14 | |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
1.1.3 Effects Analysis
```{r}
glmmTMB(formula = ROS_perc ~ Condition, data = data, family = Gamma("log"),
REML = TRUE, ziformula = ~0, dispformula = ~1)
```1.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 100.000 | 6.310 | (88.37, 113.17) | 72.980 | < .001 |
| Condition2 | 1.200 | 0.089 | (1.04, 1.39) | 2.454 | 0.014 * |
| Model: ROS_perc ~ Condition (18 Observations) | |||||
| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | 100.000 | 6.310 | (88.37, 113.17) | 72.980 | < .001 |
| Condition2 | 1.200 | 0.089 | (1.04, 1.39) | 2.454 | 0.014 * |
| Model: ROS_perc ~ Condition (18 Observations) | |||||
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 6.02 | 1 | 0.010 ** |
| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 6.02 | 1 | 0.010 ** |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 2 | 158.41 | 160.19 | -77.20 | 154.41 | |||
| mod_full | 3 | 154.79 | 157.46 | -74.39 | 148.79 | 5.62 | 1 | 0.020 * |
| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 2 | 158.41 | 160.19 | -77.20 | 154.41 | |||
| mod_full | 3 | 154.79 | 157.46 | -74.39 | 148.79 | 5.62 | 1 | 0.020 * |
Our LRT() method removes the predictor plus all its interactions
1.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")| Condition | response | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 100 | 6.31 | 17 | 87.535 | 114.24 |
| IH | 119.99 | 4.696 | 17 | 110.481 | 130.317 |
| Condition | response | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 100 | 6.31 | 17 | 87.535 | 114.24 |
| IH | 119.99 | 4.696 | 17 | 110.481 | 130.317 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)| contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
|---|---|---|---|---|---|---|---|---|
| N / IH | 0.833 | 0.062 | 17 | 0.713 | 0.975 | 1 | −2.454 | 0.025 * |
| contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
|---|---|---|---|---|---|---|---|---|
| N / IH | 0.833 | 0.062 | 17 | 0.713 | 0.975 | 1 | −2.454 | 0.025 * |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: