10  Calbindin [P12]

Data

Description

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

N_CC

Number of Purkinje cell bodies (per 413x10^(3) µm^(3))

A_ML

Area of the ML (10^(-4) µm^(2))

A_PC_per_cell

Purkinje dendrite area (10^(-4) µm^(2)) per Purkinje cell body

Vol_PC_per_cell

Purkinje dendrite volume (10^(-4) µm^(3)) per Purkinje cell body

Variable Description
Mouse

Mouse unique identifier

Condition

Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH)

Z

Bregma coordinates (Ant, Med, Post)

N_CC

Number of Purkinje cell bodies (per 413x10^(3) µm^(3))

A_ML

Area of the ML (10^(-4) µm^(2))

A_PC_per_cell

Purkinje dendrite area (10^(-4) µm^(2)) per Purkinje cell body

Vol_PC_per_cell

Purkinje dendrite volume (10^(-4) µm^(3)) per Purkinje cell body

Correlations

10.1 Number of Purkinje cell bodies

10.1.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.963 2.361 5.575 0.297 3 5 13 0.956 0.057 27
IH 8.467 1.552 2.41 0.183 2 6 11 −0.523 −0.579 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.963 2.361 5.575 0.297 3 5 13 0.956 0.057 27
IH 8.467 1.552 2.41 0.183 2 6 11 −0.523 −0.579 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.935 1.982 3.929 0.25 3 5 14 0.836 1.503 31
IH 8.353 2.262 5.118 0.271 3 4 14 0.493 1.492 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.935 1.982 3.929 0.25 3 5 14 0.836 1.503 31
IH 8.353 2.262 5.118 0.271 3 4 14 0.493 1.492 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.818 1.911 3.653 0.244 2.5 5 13 0.533 0.211 33
IH 9.148 1.955 3.823 0.214 4 6 12 0.043 −1.277 27
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 7.818 1.911 3.653 0.244 2.5 5 13 0.533 0.211 33
IH 9.148 1.955 3.823 0.214 4 6 12 0.043 −1.277 27

10.1.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = genpois("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
671.02 672.05 695.11 0.18 0.02 0.16 1.80 0.46 -2.16 0.08
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
671.02 672.05 695.11 0.18 0.02 0.16 1.80 0.46 -2.16 0.08

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =   0.875
  Pearson's Chi-Squared = 129.432
                p-value =   0.862

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = nbinom2("log"), REML = TRUE, start = list(beta = c(I(mean(data$N_CC)), 
        rep(0, 5))), ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
1 0.32 1 1.86 4.29e+07 -2.96 0.08
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
1 0.32 1 1.86 4.29e+07 -2.96 0.08

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =  0.431
  Pearson's Chi-Squared = 63.832
                p-value =      1

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

No potential outliers detected by the model.

Model call:

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = poisson("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
703.73 704.52 724.80 0.07 0.02 0.05 1.86 1 -2.18 0.08
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma Score_log Score_spherical
703.73 704.52 724.80 0.07 0.02 0.05 1.86 1 -2.18 0.08

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

performance::check_overdispersion(mod)
# Overdispersion test

       dispersion ratio =  0.428
  Pearson's Chi-Squared = 63.832
                p-value =      1

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

No potential outliers detected by the model.

10.1.3 Effects Analysis

```{r}
glmmTMB(formula = N_CC ~ Condition * Z + (1 | Mouse), data = data, 
    family = genpois("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

10.1.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 8.138 0.304 (7.56, 8.76) 56.038 < .001
Condition1 0.971 0.036 (0.90, 1.04) -0.800 0.424
Z1 1.008 0.033 (0.95, 1.07) 0.238 0.811
Z2 0.977 0.029 (0.92, 1.04) -0.793 0.428
Condition1 * Z1 1.001 0.033 (0.94, 1.07) 0.033 0.974
Condition1 * Z2 1.022 0.030 (0.96, 1.08) 0.742 0.458
Model: N_CC ~ Condition * Z (150 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 8.138 0.304 (7.56, 8.76) 56.038 < .001
Condition1 0.971 0.036 (0.90, 1.04) -0.800 0.424
Z1 1.008 0.033 (0.95, 1.07) 0.238 0.811
Z2 0.977 0.029 (0.92, 1.04) -0.793 0.428
Condition1 * Z1 1.001 0.033 (0.94, 1.07) 0.033 0.974
Condition1 * Z2 1.022 0.030 (0.96, 1.08) 0.742 0.458
Model: N_CC ~ Condition * Z (150 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 0.64 1 0.420
Z 0.72 2 0.700
Condition:Z 0.92 2 0.630
term statistic df p.value
Condition 0.64 1 0.420
Z 0.72 2 0.700
Condition:Z 0.92 2 0.630

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 635.64 650.69 -312.82 625.64
mod_full 8 639.71 663.80 -311.86 623.71 1.93 3 0.590
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 635.64 650.69 -312.82 625.64
mod_full 8 639.71 663.80 -311.86 623.71 1.93 3 0.590
Important

Our LRT() method removes the predictor plus all its interactions

10.1.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 7.898 0.385 148 7.173 8.697
IH 8.384 0.475 148 7.496 9.378
Condition response SE df lower.CL upper.CL
N 7.898 0.385 148 7.173 8.697
IH 8.384 0.475 148 7.496 9.378
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.942 0.07 148 0.813 1.092 1 −0.8 0.425
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.942 0.07 148 0.813 1.092 1 −0.8 0.425
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 8.201 0.419 148 7.414 9.072
Med 7.947 0.388 148 7.217 8.752
Post 8.268 0.364 148 7.579 9.019
Z response SE df lower.CL upper.CL
Ant 8.201 0.419 148 7.414 9.072
Med 7.947 0.388 148 7.217 8.752
Post 8.268 0.364 148 7.579 9.019
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.032 0.058 148 0.924 1.153 1 0.561 0.576
Ant / Post 0.992 0.052 148 0.894 1.101 1 −0.154 0.878
Med / Post 0.961 0.046 148 0.875 1.056 1 −0.832 0.407
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.032 0.058 148 0.924 1.153 1 0.561 0.576
Ant / Post 0.992 0.052 148 0.894 1.101 1 −0.154 0.878
Med / Post 0.961 0.046 148 0.875 1.056 1 −0.832 0.407
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 7.969 0.508 148 7.025 9.039
IH 8.441 0.674 148 7.209 9.883
Condition response SE df lower.CL upper.CL
N 7.969 0.508 148 7.025 9.039
IH 8.441 0.674 148 7.209 9.883
Condition response SE df lower.CL upper.CL
N 7.886 0.476 148 7 8.885
IH 8.009 0.612 148 6.886 9.315
Condition response SE df lower.CL upper.CL
N 7.886 0.476 148 7 8.885
IH 8.009 0.612 148 6.886 9.315
Condition response SE df lower.CL upper.CL
N 7.841 0.467 148 6.97 8.82
IH 8.719 0.567 148 7.667 9.914
Condition response SE df lower.CL upper.CL
N 7.841 0.467 148 6.97 8.82
IH 8.719 0.567 148 7.667 9.914
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.944 0.097 148 0.771 1.155 1 −0.563 0.574
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.944 0.097 148 0.771 1.155 1 −0.563 0.574
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.985 0.096 148 0.813 1.193 1 −0.159 0.874
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.985 0.096 148 0.813 1.193 1 −0.159 0.874
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.899 0.079 148 0.755 1.071 1 −1.202 0.231
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.899 0.079 148 0.755 1.071 1 −1.202 0.231
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.959 0.108 148 0.768 1.197 1 −0.375 0.708
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.959 0.108 148 0.768 1.197 1 −0.375 0.708
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.05 0.112 148 0.851 1.295 1 0.457 0.648
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.05 0.112 148 0.851 1.295 1 0.457 0.648
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.095 0.104 148 0.908 1.321 1 0.956 0.341
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.095 0.104 148 0.908 1.321 1 0.956 0.341
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


10.2 Area of the ML

10.2.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 196.676 46.254 2,139.45 0.235 65.741 74.138 316.416 0.11 1.833 27
IH 131.386 33.031 1,091.052 0.251 36.045 89.907 194.97 0.963 −0.13 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 196.676 46.254 2,139.45 0.235 65.741 74.138 316.416 0.11 1.833 27
IH 131.386 33.031 1,091.052 0.251 36.045 89.907 194.97 0.963 −0.13 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 175.21 40.098 1,607.841 0.229 55.706 111.411 282.624 0.974 0.679 31
IH 135.674 42.169 1,778.228 0.311 63.795 72.909 211.968 0.165 −0.739 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 175.21 40.098 1,607.841 0.229 55.706 111.411 282.624 0.974 0.679 31
IH 135.674 42.169 1,778.228 0.311 63.795 72.909 211.968 0.165 −0.739 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 204.881 46.349 2,148.231 0.226 62.157 132.096 308.838 0.494 −0.152 33
IH 204.747 66.127 4,372.741 0.323 105.882 76.8 322.56 −0.183 −0.659 27
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 204.881 46.349 2,148.231 0.226 62.157 132.096 308.838 0.494 −0.152 33
IH 204.747 66.127 4,372.741 0.323 105.882 76.8 322.56 −0.183 −0.659 27

10.2.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
1582.63 1583.65 1606.71 0.59 0.17 0.51 37.82 0.22
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
1582.63 1583.65 1606.71 0.59 0.17 0.51 37.82 0.22

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
1596.85 1597.87 1620.93 3.97e-05 1.22e-05 2.75e-05 37.82 39.72
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
1596.85 1597.87 1620.93 3.97e-05 1.22e-05 2.75e-05 37.82 39.72

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

10.2.3 Effects Analysis

```{r}
glmmTMB(formula = A_ML ~ Condition * Z + (1 | Mouse), data = data, 
    family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```

10.2.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 171.679 11.832 (149.99, 196.51) 74.661 < .001
Condition1 1.117 0.077 (0.98, 1.28) 1.599 0.110
Z1 1.011 0.031 (0.95, 1.07) 0.343 0.732
Z2 0.879 0.025 (0.83, 0.93) -4.586 < .001
Condition1 * Z1 1.003 0.031 (0.94, 1.07) 0.100 0.921
Condition1 * Z2 1.041 0.029 (0.99, 1.10) 1.437 0.151
Model: A_ML ~ Condition * Z (150 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 171.679 11.832 (149.99, 196.51) 74.661 < .001
Condition1 1.117 0.077 (0.98, 1.28) 1.599 0.110
Z1 1.011 0.031 (0.95, 1.07) 0.343 0.732
Z2 0.879 0.025 (0.83, 0.93) -4.586 < .001
Condition1 * Z1 1.003 0.031 (0.94, 1.07) 0.100 0.921
Condition1 * Z2 1.041 0.029 (0.99, 1.10) 1.437 0.151
Model: A_ML ~ Condition * Z (150 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 2.56 1 0.110
Z 29.91 2 <0.001 ***
Condition:Z 3.48 2 0.180
term statistic df p.value
Condition 2.56 1 0.110
Z 29.91 2 <0.001 ***
Condition:Z 3.48 2 0.180

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 1553.34 1568.39 -771.67 1543.34
mod_full 8 1553.34 1577.42 -768.67 1537.34 6.00 3 0.110
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 1553.34 1568.39 -771.67 1543.34
mod_full 8 1553.34 1577.42 -768.67 1537.34 6.00 3 0.110
Important

Our LRT() method removes the predictor plus all its interactions

10.2.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 191.682 17.647 148 159.797 229.928
IH 153.763 15.774 148 125.549 188.318
Condition response SE df lower.CL upper.CL
N 191.682 17.647 148 159.797 229.928
IH 153.763 15.774 148 125.549 188.318
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.247 0.172 148 0.949 1.637 1 1.599 0.112
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.247 0.172 148 0.949 1.637 1 1.599 0.112
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 173.521 13.316 148 149.104 201.936
Med 150.966 11.297 148 130.214 175.025
Post 193.16 13.966 148 167.442 222.829
Z response SE df lower.CL upper.CL
Ant 173.521 13.316 148 149.104 201.936
Med 150.966 11.297 148 130.214 175.025
Post 193.16 13.966 148 167.442 222.829
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.149 0.061 148 1.035 1.276 1 2.634 0.009 **
Ant / Post 0.898 0.046 148 0.813 0.993 1 −2.112 0.036 *
Med / Post 0.782 0.035 148 0.715 0.854 1 −5.469 <0.001 ***
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.149 0.061 148 1.035 1.276 1 2.634 0.009 **
Ant / Post 0.898 0.046 148 0.813 0.993 1 −2.112 0.036 *
Med / Post 0.782 0.035 148 0.715 0.854 1 −5.469 <0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 194.342 19.329 148 159.664 236.551
IH 154.931 18.117 148 122.965 195.206
Condition response SE df lower.CL upper.CL
N 194.342 19.329 148 159.664 236.551
IH 154.931 18.117 148 122.965 195.206
Condition response SE df lower.CL upper.CL
N 175.485 17.158 148 144.653 212.889
IH 129.873 14.716 148 103.819 162.465
Condition response SE df lower.CL upper.CL
N 175.485 17.158 148 144.653 212.889
IH 129.873 14.716 148 103.819 162.465
Condition response SE df lower.CL upper.CL
N 206.507 20.039 148 170.474 250.157
IH 180.676 19.376 148 146.173 223.324
Condition response SE df lower.CL upper.CL
N 206.507 20.039 148 170.474 250.157
IH 180.676 19.376 148 146.173 223.324
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.254 0.193 148 0.926 1.699 1 1.476 0.142
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.254 0.193 148 0.926 1.699 1 1.476 0.142
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.351 0.202 148 1.005 1.816 1 2.011 0.046 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.351 0.202 148 1.005 1.816 1 2.011 0.046 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.143 0.165 148 0.859 1.521 1 0.924 0.357
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.143 0.165 148 0.859 1.521 1 0.924 0.357
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.928 0.098 148 0.753 1.144 1 −0.703 0.483
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 0.928 0.098 148 0.753 1.144 1 −0.703 0.483
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.097 0.112 148 0.897 1.342 1 0.914 0.362
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.097 0.112 148 0.897 1.342 1 0.914 0.362
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.182 0.107 148 0.989 1.413 1 1.856 0.065
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.182 0.107 148 0.989 1.413 1 1.856 0.065
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


10.3 Purkinje dendrite Area per Purkinje cell body

10.3.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.427 0.171 0.029 0.401 0.245 0.187 1.04 1.685 5.225 27
IH 0.274 0.085 0.007 0.311 0.117 0.164 0.464 0.7 0.059 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.427 0.171 0.029 0.401 0.245 0.187 1.04 1.685 5.225 27
IH 0.274 0.085 0.007 0.311 0.117 0.164 0.464 0.7 0.059 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.335 0.112 0.013 0.334 0.132 0.138 0.617 0.912 0.701 31
IH 0.254 0.081 0.007 0.318 0.112 0.148 0.411 0.628 −0.427 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.335 0.112 0.013 0.334 0.132 0.138 0.617 0.912 0.701 31
IH 0.254 0.081 0.007 0.318 0.112 0.148 0.411 0.628 −0.427 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.367 0.123 0.015 0.335 0.183 0.136 0.648 0.541 −0.251 32
IH 0.353 0.175 0.031 0.496 0.17 0.163 0.822 1.488 1.74 26
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.367 0.123 0.015 0.335 0.183 0.136 0.648 0.541 −0.251 32
IH 0.353 0.175 0.031 0.496 0.17 0.163 0.822 1.488 1.74 26

10.3.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-180.41 -179.38 -156.43 0.26 0.14 0.14 0.12 0.34
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-180.41 -179.38 -156.43 0.26 0.14 0.14 0.12 0.34

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-137.71 -136.67 -113.73 0.67 0.43 0.43 0.13 0.13
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-137.71 -136.67 -113.73 0.67 0.43 0.43 0.13 0.13

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

10.3.3 Effects Analysis

```{r}
glmmTMB(formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

10.3.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.331 0.017 (0.30, 0.37) -21.596 < .001
Condition1 1.132 0.058 (1.02, 1.25) 2.430 0.015 *
Z1 1.049 0.049 (0.96, 1.15) 1.026 0.305
Z2 0.901 0.040 (0.83, 0.98) -2.369 0.018 *
Condition1 * Z1 1.097 0.051 (1.00, 1.20) 1.983 0.047 *
Condition1 * Z2 0.984 0.044 (0.90, 1.07) -0.355 0.722
Model: A_PC_per_cell ~ Condition * Z (148 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.331 0.017 (0.30, 0.37) -21.596 < .001
Condition1 1.132 0.058 (1.02, 1.25) 2.430 0.015 *
Z1 1.049 0.049 (0.96, 1.15) 1.026 0.305
Z2 0.901 0.040 (0.83, 0.98) -2.369 0.018 *
Condition1 * Z1 1.097 0.051 (1.00, 1.20) 1.983 0.047 *
Condition1 * Z2 0.984 0.044 (0.90, 1.07) -0.355 0.722
Model: A_PC_per_cell ~ Condition * Z (148 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 5.91 1 0.020 *
Z 5.73 2 0.060
Condition:Z 4.73 2 0.090
term statistic df p.value
Condition 5.91 1 0.020 *
Z 5.73 2 0.060
Condition:Z 4.73 2 0.090

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -204.41 -189.43 107.21 -214.41
mod_full 8 -207.55 -183.57 111.77 -223.55 9.14 3 0.030 *
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -204.41 -189.43 107.21 -214.41
mod_full 8 -207.55 -183.57 111.77 -223.55 9.14 3 0.030 *
Important

Our LRT() method removes the predictor plus all its interactions

10.3.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 0.375 0.025 146 0.328 0.427
IH 0.292 0.023 146 0.25 0.341
Condition response SE df lower.CL upper.CL
N 0.375 0.025 146 0.328 0.427
IH 0.292 0.023 146 0.25 0.341
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.282 0.131 146 1.048 1.57 1 2.43 0.016 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.282 0.131 146 1.048 1.57 1 2.43 0.016 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 0.347 0.025 146 0.301 0.4
Med 0.298 0.02 146 0.26 0.341
Post 0.35 0.022 146 0.309 0.396
Z response SE df lower.CL upper.CL
Ant 0.347 0.025 146 0.301 0.4
Med 0.298 0.02 146 0.26 0.341
Post 0.35 0.022 146 0.309 0.396
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.165 0.093 146 0.994 1.365 1 1.905 0.059
Ant / Post 0.991 0.078 146 0.849 1.157 1 −0.112 0.911
Med / Post 0.851 0.063 146 0.736 0.984 1 −2.19 0.030 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.165 0.093 146 0.994 1.365 1 1.905 0.059
Ant / Post 0.991 0.078 146 0.849 1.157 1 −0.112 0.911
Med / Post 0.851 0.063 146 0.736 0.984 1 −2.19 0.030 *
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 0.431 0.038 146 0.362 0.513
IH 0.28 0.032 146 0.223 0.35
Condition response SE df lower.CL upper.CL
N 0.431 0.038 146 0.362 0.513
IH 0.28 0.032 146 0.223 0.35
Condition response SE df lower.CL upper.CL
N 0.332 0.028 146 0.281 0.392
IH 0.267 0.029 146 0.215 0.332
Condition response SE df lower.CL upper.CL
N 0.332 0.028 146 0.281 0.392
IH 0.267 0.029 146 0.215 0.332
Condition response SE df lower.CL upper.CL
N 0.367 0.03 146 0.312 0.432
IH 0.334 0.032 146 0.277 0.402
Condition response SE df lower.CL upper.CL
N 0.367 0.03 146 0.312 0.432
IH 0.334 0.032 146 0.277 0.402
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.542 0.221 146 1.161 2.047 1 3.019 0.003 **
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.542 0.221 146 1.161 2.047 1 3.019 0.003 **
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.242 0.171 146 0.946 1.632 1 1.573 0.118
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.242 0.171 146 0.946 1.632 1 1.573 0.118
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.101 0.138 146 0.859 1.411 1 0.765 0.446
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.101 0.138 146 0.859 1.411 1 0.765 0.446
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.241 0.199 146 0.904 1.705 1 1.345 0.181
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.241 0.199 146 0.904 1.705 1 1.345 0.181
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.401 0.217 146 1.031 1.904 1 2.17 0.032 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.401 0.217 146 1.031 1.904 1 2.17 0.032 *
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.129 0.168 146 0.841 1.513 1 0.814 0.417
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.129 0.168 146 0.841 1.513 1 0.814 0.417
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:


10.4 Purkinje dendrite Volume per Purkinje cell body

10.4.1 Data Exploration

Distribution:

Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.247 0.103 0.011 0.416 0.127 0.091 0.499 0.859 0.924 27
IH 0.19 0.049 0.002 0.255 0.07 0.125 0.275 0.467 −0.691 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.247 0.103 0.011 0.416 0.127 0.091 0.499 0.859 0.924 27
IH 0.19 0.049 0.002 0.255 0.07 0.125 0.275 0.467 −0.691 15
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.195 0.061 0.004 0.313 0.089 0.071 0.34 0.265 0.18 31
IH 0.147 0.056 0.003 0.385 0.085 0.079 0.251 0.712 −0.568 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.195 0.061 0.004 0.313 0.089 0.071 0.34 0.265 0.18 31
IH 0.147 0.056 0.003 0.385 0.085 0.079 0.251 0.712 −0.568 17
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.217 0.086 0.007 0.398 0.134 0.112 0.485 1.083 1.595 33
IH 0.186 0.083 0.007 0.444 0.09 0.068 0.419 1.209 1.931 26
Condition Mean SD Variance CoV IQR Min Max Skewness Kurtosis n
N 0.217 0.086 0.007 0.398 0.134 0.112 0.485 1.083 1.595 33
IH 0.186 0.083 0.007 0.444 0.09 0.068 0.419 1.209 1.931 26

10.4.2 Models & Diagnostics

Exploring some Generalized Linear (Mixed) model candidates:

Model call:

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-330.31 -329.29 -306.28 0.22 0.12 0.12 0.07 0.36
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-330.31 -329.29 -306.28 0.22 0.12 0.12 0.07 0.36

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

Model call:

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = gaussian("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

Performance:

performance::performance(mod)
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-299.32 -298.29 -275.29 0.83 0.57 0.60 0.07 0.08
AIC AICc BIC R2_conditional R2_marginal ICC RMSE Sigma
-299.32 -298.29 -275.29 0.83 0.57 0.60 0.07 0.08

Residuals:

performance::check_model(
  mod, panel = FALSE,
  check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)

Predictions:

Simulating data from the model for pseudo “Posterior Predictive” plots.

Simulated data vs observed data:

Simulated statistics vs observed ones:

Potential outliers:

10.4.3 Effects Analysis

```{r}
glmmTMB(formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse), 
    data = data, family = Gamma("log"), REML = TRUE, ziformula = ~0, 
    dispformula = ~1)
```

10.4.3.1 Coefficients

❖ All effects (Wald):

parameters::parameters(
  mod, component = "conditional", effects = "fixed",
  exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.194 0.010 (0.18, 0.21) -32.459 < .001
Condition1 1.121 0.057 (1.02, 1.24) 2.260 0.024 *
Z1 1.096 0.053 (1.00, 1.21) 1.889 0.059
Z2 0.895 0.042 (0.82, 0.98) -2.362 0.018 *
Condition1 * Z1 1.049 0.052 (0.95, 1.16) 0.959 0.338
Condition1 * Z2 0.991 0.047 (0.90, 1.09) -0.189 0.850
Model: Vol_PC_per_cell ~ Condition * Z (149 Observations)
Parameter Coefficient SE 95% CI z p
(Intercept) 0.194 0.010 (0.18, 0.21) -32.459 < .001
Condition1 1.121 0.057 (1.02, 1.24) 2.260 0.024 *
Z1 1.096 0.053 (1.00, 1.21) 1.889 0.059
Z2 0.895 0.042 (0.82, 0.98) -2.362 0.018 *
Condition1 * Z1 1.049 0.052 (0.95, 1.16) 0.959 0.338
Condition1 * Z2 0.991 0.047 (0.90, 1.09) -0.189 0.850
Model: Vol_PC_per_cell ~ Condition * Z (149 Observations)

❖ Main effects (Wald Chi-Square):

car::Anova(mod, type = 3)
term statistic df p.value
Condition 5.11 1 0.020 *
Z 5.95 2 0.050 *
Condition:Z 1.17 2 0.560
term statistic df p.value
Condition 5.11 1 0.020 *
Z 5.95 2 0.050 *
Condition:Z 1.17 2 0.560

❖ Main effects (Likelihood Ratio Test):

LRT(mod, pred = "Condition")
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -357.24 -342.22 183.62 -367.24
mod_full 8 -357.12 -333.09 186.56 -373.12 5.88 3 0.120
model df aic bic log_lik deviance chisq chi_df pr_chisq
mod_reduced 5 -357.24 -342.22 183.62 -367.24
mod_full 8 -357.12 -333.09 186.56 -373.12 5.88 3 0.120
Important

Our LRT() method removes the predictor plus all its interactions

10.4.3.2 Marginal Effects

Marginal means & Contrasts for each predictor:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Condition response SE df lower.CL upper.CL
N 0.217 0.014 147 0.191 0.247
IH 0.173 0.013 147 0.148 0.201
Condition response SE df lower.CL upper.CL
N 0.217 0.014 147 0.191 0.247
IH 0.173 0.013 147 0.148 0.201
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.257 0.127 147 1.029 1.535 1 2.26 0.025 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.257 0.127 147 1.029 1.535 1 2.26 0.025 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = pred, type = "response")
Z response SE df lower.CL upper.CL
Ant 0.212 0.015 147 0.184 0.245
Med 0.174 0.012 147 0.151 0.199
Post 0.198 0.012 147 0.175 0.224
Z response SE df lower.CL upper.CL
Ant 0.212 0.015 147 0.184 0.245
Med 0.174 0.012 147 0.151 0.199
Post 0.198 0.012 147 0.175 0.224
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = pred, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.225 0.104 147 1.035 1.449 1 2.377 0.019 *
Ant / Post 1.075 0.085 147 0.92 1.257 1 0.919 0.359
Med / Post 0.878 0.067 147 0.756 1.02 1 −1.711 0.089
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
Ant / Med 1.225 0.104 147 1.035 1.449 1 2.377 0.019 *
Ant / Post 1.075 0.085 147 0.92 1.257 1 0.919 0.359
Med / Post 0.878 0.067 147 0.756 1.02 1 −1.711 0.089
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot:

Marginal Means:

emmeans(mod, specs = emmeans_formula, type = "response")
Condition response SE df lower.CL upper.CL
N 0.25 0.022 147 0.209 0.298
IH 0.181 0.021 147 0.144 0.227
Condition response SE df lower.CL upper.CL
N 0.25 0.022 147 0.209 0.298
IH 0.181 0.021 147 0.144 0.227
Condition response SE df lower.CL upper.CL
N 0.193 0.016 147 0.163 0.228
IH 0.156 0.017 147 0.125 0.195
Condition response SE df lower.CL upper.CL
N 0.193 0.016 147 0.163 0.228
IH 0.156 0.017 147 0.125 0.195
Condition response SE df lower.CL upper.CL
N 0.213 0.018 147 0.181 0.251
IH 0.183 0.017 147 0.152 0.22
Condition response SE df lower.CL upper.CL
N 0.213 0.018 147 0.181 0.251
IH 0.183 0.017 147 0.152 0.22
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale

Contrasts:

emmeans(mod, specs = emmeans_formula, type = "response") |> 
  contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.382 0.203 147 1.035 1.847 1 2.209 0.029 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.382 0.203 147 1.035 1.847 1 2.209 0.029 *
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.235 0.174 147 0.934 1.632 1 1.494 0.137
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.235 0.174 147 0.934 1.632 1 1.494 0.137
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.164 0.145 147 0.91 1.488 1 1.219 0.225
contrast ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.164 0.145 147 0.91 1.488 1 1.219 0.225
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
  contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.12 0.195 147 0.793 1.58 1 0.648 0.518
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.12 0.195 147 0.793 1.58 1 0.648 0.518
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.188 0.189 147 0.868 1.626 1 1.084 0.280
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.188 0.189 147 0.868 1.626 1 1.084 0.280
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.061 0.16 147 0.787 1.43 1 0.392 0.696
Condition ratio SE df lower.CL upper.CL null t.ratio p.value
N / IH 1.061 0.16 147 0.787 1.43 1 0.392 0.696
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale

Boxplot: