Number of Purkinje cell bodies
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.963
2.361
5.575
0.297
3
5
13
0.956
0.057
27
IH
8.467
1.552
2.41
0.183
2
6
11
−0.523
−0.579
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.963
2.361
5.575
0.297
3
5
13
0.956
0.057
27
IH
8.467
1.552
2.41
0.183
2
6
11
−0.523
−0.579
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.935
1.982
3.929
0.25
3
5
14
0.836
1.503
31
IH
8.353
2.262
5.118
0.271
3
4
14
0.493
1.492
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.935
1.982
3.929
0.25
3
5
14
0.836
1.503
31
IH
8.353
2.262
5.118
0.271
3
4
14
0.493
1.492
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.818
1.911
3.653
0.244
2.5
5
13
0.533
0.211
33
IH
9.148
1.955
3.823
0.214
4
6
12
0.043
−1.277
27
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
7.818
1.911
3.653
0.244
2.5
5
13
0.533
0.211
33
IH
9.148
1.955
3.823
0.214
4
6
12
0.043
−1.277
27
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = genpois ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
671.02
672.05
695.11
0.18
0.02
0.16
1.80
0.46
-2.16
0.08
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
671.02
672.05
695.11
0.18
0.02
0.16
1.80
0.46
-2.16
0.08
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.875
Pearson's Chi-Squared = 129.432
p-value = 0.862
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = nbinom2 ("log" ), REML = TRUE , start = list (beta = c (I (mean (data$ N_CC)),
rep (0 , 5 ))), ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
1
0.32
1
1.86
4.29e+07
-2.96
0.08
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
1
0.32
1
1.86
4.29e+07
-2.96
0.08
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.431
Pearson's Chi-Squared = 63.832
p-value = 1
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = poisson ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
703.73
704.52
724.80
0.07
0.02
0.05
1.86
1
-2.18
0.08
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
Score_log
Score_spherical
703.73
704.52
724.80
0.07
0.02
0.05
1.86
1
-2.18
0.08
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
# Overdispersion test
dispersion ratio = 0.428
Pearson's Chi-Squared = 63.832
p-value = 1
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
Effects Analysis
```{r}
glmmTMB (formula = N_CC ~ Condition * Z + (1 | Mouse), data = data,
family = genpois ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
8.138
0.304
(7.56, 8.76)
56.038
< .001
Condition1
0.971
0.036
(0.90, 1.04)
-0.800
0.424
Z1
1.008
0.033
(0.95, 1.07)
0.238
0.811
Z2
0.977
0.029
(0.92, 1.04)
-0.793
0.428
Condition1 * Z1
1.001
0.033
(0.94, 1.07)
0.033
0.974
Condition1 * Z2
1.022
0.030
(0.96, 1.08)
0.742
0.458
Model: N_CC ~ Condition * Z (150 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
8.138
0.304
(7.56, 8.76)
56.038
< .001
Condition1
0.971
0.036
(0.90, 1.04)
-0.800
0.424
Z1
1.008
0.033
(0.95, 1.07)
0.238
0.811
Z2
0.977
0.029
(0.92, 1.04)
-0.793
0.428
Condition1 * Z1
1.001
0.033
(0.94, 1.07)
0.033
0.974
Condition1 * Z2
1.022
0.030
(0.96, 1.08)
0.742
0.458
Model: N_CC ~ Condition * Z (150 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
0.64
1
0.420
Z
0.72
2
0.700
Condition:Z
0.92
2
0.630
term
statistic
df
p.value
Condition
0.64
1
0.420
Z
0.72
2
0.700
Condition:Z
0.92
2
0.630
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
635.64
650.69
-312.82
625.64
mod_full
8
639.71
663.80
-311.86
623.71
1.93
3
0.590
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
635.64
650.69
-312.82
625.64
mod_full
8
639.71
663.80
-311.86
623.71
1.93
3
0.590
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
7.898
0.385
148
7.173
8.697
IH
8.384
0.475
148
7.496
9.378
Condition
response
SE
df
lower.CL
upper.CL
N
7.898
0.385
148
7.173
8.697
IH
8.384
0.475
148
7.496
9.378
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.942
0.07
148
0.813
1.092
1
−0.8
0.425
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.942
0.07
148
0.813
1.092
1
−0.8
0.425
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
8.201
0.419
148
7.414
9.072
Med
7.947
0.388
148
7.217
8.752
Post
8.268
0.364
148
7.579
9.019
Z
response
SE
df
lower.CL
upper.CL
Ant
8.201
0.419
148
7.414
9.072
Med
7.947
0.388
148
7.217
8.752
Post
8.268
0.364
148
7.579
9.019
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.032
0.058
148
0.924
1.153
1
0.561
0.576
Ant / Post
0.992
0.052
148
0.894
1.101
1
−0.154
0.878
Med / Post
0.961
0.046
148
0.875
1.056
1
−0.832
0.407
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.032
0.058
148
0.924
1.153
1
0.561
0.576
Ant / Post
0.992
0.052
148
0.894
1.101
1
−0.154
0.878
Med / Post
0.961
0.046
148
0.875
1.056
1
−0.832
0.407
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
7.969
0.508
148
7.025
9.039
IH
8.441
0.674
148
7.209
9.883
Condition
response
SE
df
lower.CL
upper.CL
N
7.969
0.508
148
7.025
9.039
IH
8.441
0.674
148
7.209
9.883
Condition
response
SE
df
lower.CL
upper.CL
N
7.886
0.476
148
7
8.885
IH
8.009
0.612
148
6.886
9.315
Condition
response
SE
df
lower.CL
upper.CL
N
7.886
0.476
148
7
8.885
IH
8.009
0.612
148
6.886
9.315
Condition
response
SE
df
lower.CL
upper.CL
N
7.841
0.467
148
6.97
8.82
IH
8.719
0.567
148
7.667
9.914
Condition
response
SE
df
lower.CL
upper.CL
N
7.841
0.467
148
6.97
8.82
IH
8.719
0.567
148
7.667
9.914
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.944
0.097
148
0.771
1.155
1
−0.563
0.574
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.944
0.097
148
0.771
1.155
1
−0.563
0.574
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.985
0.096
148
0.813
1.193
1
−0.159
0.874
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.985
0.096
148
0.813
1.193
1
−0.159
0.874
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.899
0.079
148
0.755
1.071
1
−1.202
0.231
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.899
0.079
148
0.755
1.071
1
−1.202
0.231
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.959
0.108
148
0.768
1.197
1
−0.375
0.708
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.959
0.108
148
0.768
1.197
1
−0.375
0.708
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.05
0.112
148
0.851
1.295
1
0.457
0.648
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.05
0.112
148
0.851
1.295
1
0.457
0.648
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.095
0.104
148
0.908
1.321
1
0.956
0.341
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.095
0.104
148
0.908
1.321
1
0.956
0.341
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Area of the ML
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
196.676
46.254
2,139.45
0.235
65.741
74.138
316.416
0.11
1.833
27
IH
131.386
33.031
1,091.052
0.251
36.045
89.907
194.97
0.963
−0.13
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
196.676
46.254
2,139.45
0.235
65.741
74.138
316.416
0.11
1.833
27
IH
131.386
33.031
1,091.052
0.251
36.045
89.907
194.97
0.963
−0.13
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
175.21
40.098
1,607.841
0.229
55.706
111.411
282.624
0.974
0.679
31
IH
135.674
42.169
1,778.228
0.311
63.795
72.909
211.968
0.165
−0.739
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
175.21
40.098
1,607.841
0.229
55.706
111.411
282.624
0.974
0.679
31
IH
135.674
42.169
1,778.228
0.311
63.795
72.909
211.968
0.165
−0.739
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
204.881
46.349
2,148.231
0.226
62.157
132.096
308.838
0.494
−0.152
33
IH
204.747
66.127
4,372.741
0.323
105.882
76.8
322.56
−0.183
−0.659
27
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
204.881
46.349
2,148.231
0.226
62.157
132.096
308.838
0.494
−0.152
33
IH
204.747
66.127
4,372.741
0.323
105.882
76.8
322.56
−0.183
−0.659
27
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
1582.63
1583.65
1606.71
0.59
0.17
0.51
37.82
0.22
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
1582.63
1583.65
1606.71
0.59
0.17
0.51
37.82
0.22
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
1596.85
1597.87
1620.93
3.97e-05
1.22e-05
2.75e-05
37.82
39.72
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
1596.85
1597.87
1620.93
3.97e-05
1.22e-05
2.75e-05
37.82
39.72
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = A_ML ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 , dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
171.679
11.832
(149.99, 196.51)
74.661
< .001
Condition1
1.117
0.077
(0.98, 1.28)
1.599
0.110
Z1
1.011
0.031
(0.95, 1.07)
0.343
0.732
Z2
0.879
0.025
(0.83, 0.93)
-4.586
< .001
Condition1 * Z1
1.003
0.031
(0.94, 1.07)
0.100
0.921
Condition1 * Z2
1.041
0.029
(0.99, 1.10)
1.437
0.151
Model: A_ML ~ Condition * Z (150 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
171.679
11.832
(149.99, 196.51)
74.661
< .001
Condition1
1.117
0.077
(0.98, 1.28)
1.599
0.110
Z1
1.011
0.031
(0.95, 1.07)
0.343
0.732
Z2
0.879
0.025
(0.83, 0.93)
-4.586
< .001
Condition1 * Z1
1.003
0.031
(0.94, 1.07)
0.100
0.921
Condition1 * Z2
1.041
0.029
(0.99, 1.10)
1.437
0.151
Model: A_ML ~ Condition * Z (150 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
2.56
1
0.110
Z
29.91
2
<0.001 ***
Condition:Z
3.48
2
0.180
term
statistic
df
p.value
Condition
2.56
1
0.110
Z
29.91
2
<0.001 ***
Condition:Z
3.48
2
0.180
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
1553.34
1568.39
-771.67
1543.34
mod_full
8
1553.34
1577.42
-768.67
1537.34
6.00
3
0.110
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
1553.34
1568.39
-771.67
1543.34
mod_full
8
1553.34
1577.42
-768.67
1537.34
6.00
3
0.110
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
191.682
17.647
148
159.797
229.928
IH
153.763
15.774
148
125.549
188.318
Condition
response
SE
df
lower.CL
upper.CL
N
191.682
17.647
148
159.797
229.928
IH
153.763
15.774
148
125.549
188.318
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.247
0.172
148
0.949
1.637
1
1.599
0.112
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.247
0.172
148
0.949
1.637
1
1.599
0.112
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
173.521
13.316
148
149.104
201.936
Med
150.966
11.297
148
130.214
175.025
Post
193.16
13.966
148
167.442
222.829
Z
response
SE
df
lower.CL
upper.CL
Ant
173.521
13.316
148
149.104
201.936
Med
150.966
11.297
148
130.214
175.025
Post
193.16
13.966
148
167.442
222.829
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.149
0.061
148
1.035
1.276
1
2.634
0.009 **
Ant / Post
0.898
0.046
148
0.813
0.993
1
−2.112
0.036 *
Med / Post
0.782
0.035
148
0.715
0.854
1
−5.469
<0.001 ***
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.149
0.061
148
1.035
1.276
1
2.634
0.009 **
Ant / Post
0.898
0.046
148
0.813
0.993
1
−2.112
0.036 *
Med / Post
0.782
0.035
148
0.715
0.854
1
−5.469
<0.001 ***
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
194.342
19.329
148
159.664
236.551
IH
154.931
18.117
148
122.965
195.206
Condition
response
SE
df
lower.CL
upper.CL
N
194.342
19.329
148
159.664
236.551
IH
154.931
18.117
148
122.965
195.206
Condition
response
SE
df
lower.CL
upper.CL
N
175.485
17.158
148
144.653
212.889
IH
129.873
14.716
148
103.819
162.465
Condition
response
SE
df
lower.CL
upper.CL
N
175.485
17.158
148
144.653
212.889
IH
129.873
14.716
148
103.819
162.465
Condition
response
SE
df
lower.CL
upper.CL
N
206.507
20.039
148
170.474
250.157
IH
180.676
19.376
148
146.173
223.324
Condition
response
SE
df
lower.CL
upper.CL
N
206.507
20.039
148
170.474
250.157
IH
180.676
19.376
148
146.173
223.324
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.254
0.193
148
0.926
1.699
1
1.476
0.142
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.254
0.193
148
0.926
1.699
1
1.476
0.142
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.351
0.202
148
1.005
1.816
1
2.011
0.046 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.351
0.202
148
1.005
1.816
1
2.011
0.046 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.143
0.165
148
0.859
1.521
1
0.924
0.357
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.143
0.165
148
0.859
1.521
1
0.924
0.357
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.928
0.098
148
0.753
1.144
1
−0.703
0.483
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
0.928
0.098
148
0.753
1.144
1
−0.703
0.483
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.097
0.112
148
0.897
1.342
1
0.914
0.362
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.097
0.112
148
0.897
1.342
1
0.914
0.362
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.182
0.107
148
0.989
1.413
1
1.856
0.065
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.182
0.107
148
0.989
1.413
1
1.856
0.065
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Purkinje dendrite Area per Purkinje cell body
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.427
0.171
0.029
0.401
0.245
0.187
1.04
1.685
5.225
27
IH
0.274
0.085
0.007
0.311
0.117
0.164
0.464
0.7
0.059
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.427
0.171
0.029
0.401
0.245
0.187
1.04
1.685
5.225
27
IH
0.274
0.085
0.007
0.311
0.117
0.164
0.464
0.7
0.059
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.335
0.112
0.013
0.334
0.132
0.138
0.617
0.912
0.701
31
IH
0.254
0.081
0.007
0.318
0.112
0.148
0.411
0.628
−0.427
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.335
0.112
0.013
0.334
0.132
0.138
0.617
0.912
0.701
31
IH
0.254
0.081
0.007
0.318
0.112
0.148
0.411
0.628
−0.427
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.367
0.123
0.015
0.335
0.183
0.136
0.648
0.541
−0.251
32
IH
0.353
0.175
0.031
0.496
0.17
0.163
0.822
1.488
1.74
26
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.367
0.123
0.015
0.335
0.183
0.136
0.648
0.541
−0.251
32
IH
0.353
0.175
0.031
0.496
0.17
0.163
0.822
1.488
1.74
26
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-180.41
-179.38
-156.43
0.26
0.14
0.14
0.12
0.34
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-180.41
-179.38
-156.43
0.26
0.14
0.14
0.12
0.34
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-137.71
-136.67
-113.73
0.67
0.43
0.43
0.13
0.13
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-137.71
-136.67
-113.73
0.67
0.43
0.43
0.13
0.13
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = A_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.331
0.017
(0.30, 0.37)
-21.596
< .001
Condition1
1.132
0.058
(1.02, 1.25)
2.430
0.015 *
Z1
1.049
0.049
(0.96, 1.15)
1.026
0.305
Z2
0.901
0.040
(0.83, 0.98)
-2.369
0.018 *
Condition1 * Z1
1.097
0.051
(1.00, 1.20)
1.983
0.047 *
Condition1 * Z2
0.984
0.044
(0.90, 1.07)
-0.355
0.722
Model: A_PC_per_cell ~ Condition * Z (148 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.331
0.017
(0.30, 0.37)
-21.596
< .001
Condition1
1.132
0.058
(1.02, 1.25)
2.430
0.015 *
Z1
1.049
0.049
(0.96, 1.15)
1.026
0.305
Z2
0.901
0.040
(0.83, 0.98)
-2.369
0.018 *
Condition1 * Z1
1.097
0.051
(1.00, 1.20)
1.983
0.047 *
Condition1 * Z2
0.984
0.044
(0.90, 1.07)
-0.355
0.722
Model: A_PC_per_cell ~ Condition * Z (148 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
5.91
1
0.020 *
Z
5.73
2
0.060
Condition:Z
4.73
2
0.090
term
statistic
df
p.value
Condition
5.91
1
0.020 *
Z
5.73
2
0.060
Condition:Z
4.73
2
0.090
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-204.41
-189.43
107.21
-214.41
mod_full
8
-207.55
-183.57
111.77
-223.55
9.14
3
0.030 *
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-204.41
-189.43
107.21
-214.41
mod_full
8
-207.55
-183.57
111.77
-223.55
9.14
3
0.030 *
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.375
0.025
146
0.328
0.427
IH
0.292
0.023
146
0.25
0.341
Condition
response
SE
df
lower.CL
upper.CL
N
0.375
0.025
146
0.328
0.427
IH
0.292
0.023
146
0.25
0.341
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.282
0.131
146
1.048
1.57
1
2.43
0.016 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.282
0.131
146
1.048
1.57
1
2.43
0.016 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
0.347
0.025
146
0.301
0.4
Med
0.298
0.02
146
0.26
0.341
Post
0.35
0.022
146
0.309
0.396
Z
response
SE
df
lower.CL
upper.CL
Ant
0.347
0.025
146
0.301
0.4
Med
0.298
0.02
146
0.26
0.341
Post
0.35
0.022
146
0.309
0.396
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.165
0.093
146
0.994
1.365
1
1.905
0.059
Ant / Post
0.991
0.078
146
0.849
1.157
1
−0.112
0.911
Med / Post
0.851
0.063
146
0.736
0.984
1
−2.19
0.030 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.165
0.093
146
0.994
1.365
1
1.905
0.059
Ant / Post
0.991
0.078
146
0.849
1.157
1
−0.112
0.911
Med / Post
0.851
0.063
146
0.736
0.984
1
−2.19
0.030 *
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.431
0.038
146
0.362
0.513
IH
0.28
0.032
146
0.223
0.35
Condition
response
SE
df
lower.CL
upper.CL
N
0.431
0.038
146
0.362
0.513
IH
0.28
0.032
146
0.223
0.35
Condition
response
SE
df
lower.CL
upper.CL
N
0.332
0.028
146
0.281
0.392
IH
0.267
0.029
146
0.215
0.332
Condition
response
SE
df
lower.CL
upper.CL
N
0.332
0.028
146
0.281
0.392
IH
0.267
0.029
146
0.215
0.332
Condition
response
SE
df
lower.CL
upper.CL
N
0.367
0.03
146
0.312
0.432
IH
0.334
0.032
146
0.277
0.402
Condition
response
SE
df
lower.CL
upper.CL
N
0.367
0.03
146
0.312
0.432
IH
0.334
0.032
146
0.277
0.402
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.542
0.221
146
1.161
2.047
1
3.019
0.003 **
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.542
0.221
146
1.161
2.047
1
3.019
0.003 **
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.242
0.171
146
0.946
1.632
1
1.573
0.118
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.242
0.171
146
0.946
1.632
1
1.573
0.118
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.101
0.138
146
0.859
1.411
1
0.765
0.446
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.101
0.138
146
0.859
1.411
1
0.765
0.446
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.241
0.199
146
0.904
1.705
1
1.345
0.181
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.241
0.199
146
0.904
1.705
1
1.345
0.181
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.401
0.217
146
1.031
1.904
1
2.17
0.032 *
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.401
0.217
146
1.031
1.904
1
2.17
0.032 *
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.129
0.168
146
0.841
1.513
1
0.814
0.417
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.129
0.168
146
0.841
1.513
1
0.814
0.417
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
Purkinje dendrite Volume per Purkinje cell body
Data Exploration
❖ Distribution:
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.247
0.103
0.011
0.416
0.127
0.091
0.499
0.859
0.924
27
IH
0.19
0.049
0.002
0.255
0.07
0.125
0.275
0.467
−0.691
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.247
0.103
0.011
0.416
0.127
0.091
0.499
0.859
0.924
27
IH
0.19
0.049
0.002
0.255
0.07
0.125
0.275
0.467
−0.691
15
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.195
0.061
0.004
0.313
0.089
0.071
0.34
0.265
0.18
31
IH
0.147
0.056
0.003
0.385
0.085
0.079
0.251
0.712
−0.568
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.195
0.061
0.004
0.313
0.089
0.071
0.34
0.265
0.18
31
IH
0.147
0.056
0.003
0.385
0.085
0.079
0.251
0.712
−0.568
17
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.217
0.086
0.007
0.398
0.134
0.112
0.485
1.083
1.595
33
IH
0.186
0.083
0.007
0.444
0.09
0.068
0.419
1.209
1.931
26
Condition
Mean
SD
Variance
CoV
IQR
Min
Max
Skewness
Kurtosis
n
N
0.217
0.086
0.007
0.398
0.134
0.112
0.485
1.083
1.595
33
IH
0.186
0.083
0.007
0.444
0.09
0.068
0.419
1.209
1.931
26
Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-330.31
-329.29
-306.28
0.22
0.12
0.12
0.07
0.36
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-330.31
-329.29
-306.28
0.22
0.12
0.12
0.07
0.36
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = gaussian ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
❖ Performance:
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-299.32
-298.29
-275.29
0.83
0.57
0.60
0.07
0.08
AIC
AICc
BIC
R2_conditional
R2_marginal
ICC
RMSE
Sigma
-299.32
-298.29
-275.29
0.83
0.57
0.60
0.07
0.08
❖ Residuals:
performance :: check_model (
mod , panel = FALSE ,
check = c ( "pp_check" , "qq" , "reqq" , "linearity" , "homogeneity" )
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
Effects Analysis
```{r}
glmmTMB (formula = Vol_PC_per_cell ~ Condition * Z + (1 | Mouse),
data = data, family = Gamma ("log" ), REML = TRUE , ziformula = ~ 0 ,
dispformula = ~ 1 )
```
Coefficients
❖ All effects (Wald) :
parameters :: parameters (
mod , component = "conditional" , effects = "fixed" ,
exponentiate = should_exp ( mod ) , p_adjust = "none" , summary = TRUE , digits = 3
)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.194
0.010
(0.18, 0.21)
-32.459
< .001
Condition1
1.121
0.057
(1.02, 1.24)
2.260
0.024 *
Z1
1.096
0.053
(1.00, 1.21)
1.889
0.059
Z2
0.895
0.042
(0.82, 0.98)
-2.362
0.018 *
Condition1 * Z1
1.049
0.052
(0.95, 1.16)
0.959
0.338
Condition1 * Z2
0.991
0.047
(0.90, 1.09)
-0.189
0.850
Model: Vol_PC_per_cell ~ Condition * Z (149 Observations)
Parameter
Coefficient
SE
95% CI
z
p
(Intercept)
0.194
0.010
(0.18, 0.21)
-32.459
< .001
Condition1
1.121
0.057
(1.02, 1.24)
2.260
0.024 *
Z1
1.096
0.053
(1.00, 1.21)
1.889
0.059
Z2
0.895
0.042
(0.82, 0.98)
-2.362
0.018 *
Condition1 * Z1
1.049
0.052
(0.95, 1.16)
0.959
0.338
Condition1 * Z2
0.991
0.047
(0.90, 1.09)
-0.189
0.850
Model: Vol_PC_per_cell ~ Condition * Z (149 Observations)
❖ Main effects (Wald Chi-Square) :
car :: Anova ( mod , type = 3 )
term
statistic
df
p.value
Condition
5.11
1
0.020 *
Z
5.95
2
0.050 *
Condition:Z
1.17
2
0.560
term
statistic
df
p.value
Condition
5.11
1
0.020 *
Z
5.95
2
0.050 *
Condition:Z
1.17
2
0.560
❖ Main effects (Likelihood Ratio Test) :
LRT ( mod , pred = "Condition" )
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-357.24
-342.22
183.62
-367.24
mod_full
8
-357.12
-333.09
186.56
-373.12
5.88
3
0.120
model
df
aic
bic
log_lik
deviance
chisq
chi_df
pr_chisq
mod_reduced
5
-357.24
-342.22
183.62
-367.24
mod_full
8
-357.12
-333.09
186.56
-373.12
5.88
3
0.120
Our LRT()
method removes the predictor plus all its interactions
Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.217
0.014
147
0.191
0.247
IH
0.173
0.013
147
0.148
0.201
Condition
response
SE
df
lower.CL
upper.CL
N
0.217
0.014
147
0.191
0.247
IH
0.173
0.013
147
0.148
0.201
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.257
0.127
147
1.029
1.535
1
2.26
0.025 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.257
0.127
147
1.029
1.535
1
2.26
0.025 *
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = pred , type = "response" )
Z
response
SE
df
lower.CL
upper.CL
Ant
0.212
0.015
147
0.184
0.245
Med
0.174
0.012
147
0.151
0.199
Post
0.198
0.012
147
0.175
0.224
Z
response
SE
df
lower.CL
upper.CL
Ant
0.212
0.015
147
0.184
0.245
Med
0.174
0.012
147
0.151
0.199
Post
0.198
0.012
147
0.175
0.224
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = pred , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.225
0.104
147
1.035
1.449
1
2.377
0.019 *
Ant / Post
1.075
0.085
147
0.92
1.257
1
0.919
0.359
Med / Post
0.878
0.067
147
0.756
1.02
1
−1.711
0.089
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
Ant / Med
1.225
0.104
147
1.035
1.449
1
2.377
0.019 *
Ant / Post
1.075
0.085
147
0.92
1.257
1
0.919
0.359
Med / Post
0.878
0.067
147
0.756
1.02
1
−1.711
0.089
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans ( mod , specs = emmeans_formula , type = "response" )
Condition
response
SE
df
lower.CL
upper.CL
N
0.25
0.022
147
0.209
0.298
IH
0.181
0.021
147
0.144
0.227
Condition
response
SE
df
lower.CL
upper.CL
N
0.25
0.022
147
0.209
0.298
IH
0.181
0.021
147
0.144
0.227
Condition
response
SE
df
lower.CL
upper.CL
N
0.193
0.016
147
0.163
0.228
IH
0.156
0.017
147
0.125
0.195
Condition
response
SE
df
lower.CL
upper.CL
N
0.193
0.016
147
0.163
0.228
IH
0.156
0.017
147
0.125
0.195
Condition
response
SE
df
lower.CL
upper.CL
N
0.213
0.018
147
0.181
0.251
IH
0.183
0.017
147
0.152
0.22
Condition
response
SE
df
lower.CL
upper.CL
N
0.213
0.018
147
0.181
0.251
IH
0.183
0.017
147
0.152
0.22
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( method = "pairwise" , adjust = "none" , infer = TRUE )
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.382
0.203
147
1.035
1.847
1
2.209
0.029 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.382
0.203
147
1.035
1.847
1
2.209
0.029 *
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.235
0.174
147
0.934
1.632
1
1.494
0.137
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.235
0.174
147
0.934
1.632
1
1.494
0.137
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.164
0.145
147
0.91
1.488
1
1.219
0.225
contrast
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.164
0.145
147
0.91
1.488
1
1.219
0.225
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans ( mod , specs = emmeans_formula , type = "response" ) |>
contrast ( interaction = "pairwise" , by = NULL , adjust = "none" , infer = T )
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.12
0.195
147
0.793
1.58
1
0.648
0.518
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.12
0.195
147
0.793
1.58
1
0.648
0.518
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.188
0.189
147
0.868
1.626
1
1.084
0.280
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.188
0.189
147
0.868
1.626
1
1.084
0.280
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.061
0.16
147
0.787
1.43
1
0.392
0.696
Condition
ratio
SE
df
lower.CL
upper.CL
null
t.ratio
p.value
N / IH
1.061
0.16
147
0.787
1.43
1
0.392
0.696
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot: