6 Cleaved Caspase Activity
❖ Data
❖ Description
| Variable | Description |
|---|---|
| Stage |
Developmental stage |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Mouse |
Mouse unique identifier |
| Fluo_Norm |
Enzymatic Activity of Caspase 3/7 (Normalized Fluorescence) |
| Variable | Description |
|---|---|
| Stage |
Developmental stage |
| Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
| Mouse |
Mouse unique identifier |
| Fluo_Norm |
Enzymatic Activity of Caspase 3/7 (Normalized Fluorescence) |
❖ Correlations
6.1 Normalized Fluorescence of Caspase 3 Activity
6.1.1 Data Exploration
❖ Distribution:
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 0 | 1.268 | 1.607 | NA | 2.131 | −2.123 | 2.096 | −0.233 | −0.971 | 20 |
| IH | −0.941 | 1.896 | 3.595 | −2.016 | 2.071 | −6.5 | 4.105 | 0.17 | 1.891 | 52 |
| Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
|---|---|---|---|---|---|---|---|---|---|---|
| N | 0 | 1.268 | 1.607 | NA | 2.131 | −2.123 | 2.096 | −0.233 | −0.971 | 20 |
| IH | −0.941 | 1.896 | 3.595 | −2.016 | 2.071 | −6.5 | 4.105 | 0.17 | 1.891 | 52 |
6.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Fluo_Norm ~ Condition + (1 | Mouse), data = data,
family = gaussian("identity"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```❖ Performance:
performance::performance(mod)| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| 243.28 | 243.87 | 252.38 | 0.76 | 0.05 | 0.74 | 0.80 | 0.92 |
| AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
|---|---|---|---|---|---|---|---|
| 243.28 | 243.87 | 252.38 | 0.76 | 0.05 | 0.74 | 0.80 | 0.92 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
6.1.3 Effects Analysis
```{r}
glmmTMB(formula = Fluo_Norm ~ Condition + (1 | Mouse), data = data,
family = gaussian("identity"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```6.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | -0.470 | 0.427 | (-1.31, 0.37) | -1.102 | 0.271 |
| Condition1 | 0.470 | 0.427 | (-0.37, 1.31) | 1.102 | 0.271 |
| Model: Fluo_Norm ~ Condition (72 Observations) | |||||
| Parameter | Coefficient | SE | 95% CI | z | p |
|---|---|---|---|---|---|
| (Intercept) | -0.470 | 0.427 | (-1.31, 0.37) | -1.102 | 0.271 |
| Condition1 | 0.470 | 0.427 | (-0.37, 1.31) | 1.102 | 0.271 |
| Model: Fluo_Norm ~ Condition (72 Observations) | |||||
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 1.21 | 1 | 0.270 |
| term | statistic | df | p.value |
|---|---|---|---|
| Condition | 1.21 | 1 | 0.270 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | 242.53 | 249.36 | -118.26 | 236.53 | |||
| mod_full | 4 | 243.21 | 252.32 | -117.60 | 235.21 | 1.32 | 1 | 0.250 |
| model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
|---|---|---|---|---|---|---|---|---|
| mod_reduced | 3 | 242.53 | 249.36 | -118.26 | 236.53 | |||
| mod_full | 4 | 243.21 | 252.32 | -117.60 | 235.21 | 1.32 | 1 | 0.250 |
Our LRT() method removes the predictor plus all its interactions
6.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")| Condition | emmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 0 | 0.726 | 70 | −1.447 | 1.447 |
| IH | −0.941 | 0.45 | 70 | −1.838 | −0.043 |
| Condition | emmean | SE | df | lower.CL | upper.CL |
|---|---|---|---|---|---|
| N | 0 | 0.726 | 70 | −1.447 | 1.447 |
| IH | −0.941 | 0.45 | 70 | −1.838 | −0.043 |
- Confidence level used: 0.95
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| N - IH | 0.941 | 0.854 | 70 | −0.762 | 2.644 | 1.102 | 0.274 |
| contrast | estimate | SE | df | lower.CL | upper.CL | t.ratio | p.value |
|---|---|---|---|---|---|---|---|
| N - IH | 0.941 | 0.854 | 70 | −0.762 | 2.644 | 1.102 | 0.274 |
- Confidence level used: 0.95
❖ Boxplot: