3 Caspase (EGL)
❖ Data
❖ Description
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_EGL |
Area of EGL (μm²) |
Dens_EGL |
Density of cleaved caspase 3^(+) cells in the EGL area (Cells/μm²) |
Prop_C_EGL |
Proportion of cleaved caspase 3^(+) marking in the EGL area |
Variable | Description |
---|---|
Stage |
Developmental stage |
Mouse |
Mouse unique identifier |
Condition |
Hypoxia condition: Normoxia (N) vs Intermittent Hypoxia (IH) |
Z |
Bregma coordinates (Ant, Med, Post) |
A_EGL |
Area of EGL (μm²) |
Dens_EGL |
Density of cleaved caspase 3^(+) cells in the EGL area (Cells/μm²) |
Prop_C_EGL |
Proportion of cleaved caspase 3^(+) marking in the EGL area |
❖ Correlations
3.1 Area of EGL
3.1.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.884 | 0.409 | 0.167 | 0.217 | 0.806 | 1.465 | 2.441 | 0.512 | −1.896 | 6 |
IH | 1.485 | 0.669 | 0.448 | 0.451 | 1.232 | 0.582 | 2.033 | −1.048 | −0.197 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.884 | 0.409 | 0.167 | 0.217 | 0.806 | 1.465 | 2.441 | 0.512 | −1.896 | 6 |
IH | 1.485 | 0.669 | 0.448 | 0.451 | 1.232 | 0.582 | 2.033 | −1.048 | −0.197 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.691 | 0.459 | 0.211 | 0.272 | 0.627 | 1.175 | 2.594 | 1.082 | 1.071 | 8 |
IH | 1.073 | 0.774 | 0.599 | 0.721 | 1.406 | 0.206 | 2.161 | 0.588 | −0.872 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 1.691 | 0.459 | 0.211 | 0.272 | 0.627 | 1.175 | 2.594 | 1.082 | 1.071 | 8 |
IH | 1.073 | 0.774 | 0.599 | 0.721 | 1.406 | 0.206 | 2.161 | 0.588 | −0.872 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.775 | 0.594 | 0.353 | 0.766 | 1.256 | 0.208 | 1.607 | 0.624 | −1.743 | 11 |
IH | 0.917 | 0.586 | 0.343 | 0.639 | 1.095 | 0.282 | 1.768 | 0.615 | −1.695 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.775 | 0.594 | 0.353 | 0.766 | 1.256 | 0.208 | 1.607 | 0.624 | −1.743 | 11 |
IH | 0.917 | 0.586 | 0.343 | 0.639 | 1.095 | 0.282 | 1.768 | 0.615 | −1.695 | 8 |
3.1.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = A_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
99.83 | 104.19 | 113.73 | 0.58 | 0.32 | 0.38 | 0.40 | 0.49 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
99.83 | 104.19 | 113.73 | 0.58 | 0.32 | 0.38 | 0.40 | 0.49 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = A_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
95.19 | 99.56 | 109.10 | 0.54 | 0.30 | 0.35 | 0.37 | 0.44 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
95.19 | 99.56 | 109.10 | 0.54 | 0.30 | 0.35 | 0.37 | 0.44 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
3.1.3 Effects Analysis
3.1.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.127 | 0.164 | (0.85, 1.50) | 0.824 | 0.410 |
Condition1 | 1.172 | 0.170 | (0.88, 1.56) | 1.092 | 0.275 |
Z1 | 1.467 | 0.185 | (1.15, 1.88) | 3.038 | 0.002 ** |
Z2 | 1.058 | 0.122 | (0.84, 1.33) | 0.491 | 0.623 |
Condition1 * Z1 | 1.114 | 0.141 | (0.87, 1.43) | 0.848 | 0.396 |
Condition1 * Z2 | 1.134 | 0.131 | (0.90, 1.42) | 1.088 | 0.276 |
Model: A_EGL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 1.127 | 0.164 | (0.85, 1.50) | 0.824 | 0.410 |
Condition1 | 1.172 | 0.170 | (0.88, 1.56) | 1.092 | 0.275 |
Z1 | 1.467 | 0.185 | (1.15, 1.88) | 3.038 | 0.002 ** |
Z2 | 1.058 | 0.122 | (0.84, 1.33) | 0.491 | 0.623 |
Condition1 * Z1 | 1.114 | 0.141 | (0.87, 1.43) | 0.848 | 0.396 |
Condition1 * Z2 | 1.134 | 0.131 | (0.90, 1.42) | 1.088 | 0.276 |
Model: A_EGL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.19 | 1 | 0.270 |
Z | 17.71 | 2 | <0.001 *** |
Condition:Z | 4.62 | 2 | 0.100 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.19 | 1 | 0.270 |
Z | 17.71 | 2 | <0.001 *** |
Condition:Z | 4.62 | 2 | 0.100 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 83.79 | 92.47 | -36.89 | 73.79 | |||
mod_full | 8 | 84.61 | 98.51 | -34.30 | 68.61 | 5.18 | 3 | 0.160 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 83.79 | 92.47 | -36.89 | 73.79 | |||
mod_full | 8 | 84.61 | 98.51 | -34.30 | 68.61 | 5.18 | 3 | 0.160 |
3.1.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.321 | 0.247 | 40 | 0.904 | 1.929 |
IH | 0.962 | 0.213 | 40 | 0.614 | 1.506 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.321 | 0.247 | 40 | 0.904 | 1.929 |
IH | 0.962 | 0.213 | 40 | 0.614 | 1.506 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.373 | 0.399 | 40 | 0.764 | 2.47 | 1 | 1.092 | 0.281 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.373 | 0.399 | 40 | 0.764 | 2.47 | 1 | 1.092 | 0.281 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.654 | 0.334 | 40 | 1.1 | 2.486 |
Med | 1.193 | 0.224 | 40 | 0.816 | 1.744 |
Post | 0.726 | 0.122 | 40 | 0.517 | 1.019 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 1.654 | 0.334 | 40 | 1.1 | 2.486 |
Med | 1.193 | 0.224 | 40 | 0.816 | 1.744 |
Post | 0.726 | 0.122 | 40 | 0.517 | 1.019 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.386 | 0.3 | 40 | 0.895 | 2.147 | 1 | 1.508 | 0.139 |
Ant / Post | 2.279 | 0.466 | 40 | 1.507 | 3.446 | 1 | 4.025 | <0.001 *** |
Med / Post | 1.644 | 0.304 | 40 | 1.131 | 2.389 | 1 | 2.687 | 0.010 * |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.386 | 0.3 | 40 | 0.895 | 2.147 | 1 | 1.508 | 0.139 |
Ant / Post | 2.279 | 0.466 | 40 | 1.507 | 3.446 | 1 | 4.025 | <0.001 *** |
Med / Post | 1.644 | 0.304 | 40 | 1.131 | 2.389 | 1 | 2.687 | 0.010 * |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.158 | 0.568 | 40 | 1.267 | 3.675 |
IH | 1.267 | 0.394 | 40 | 0.675 | 2.377 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 2.158 | 0.568 | 40 | 1.267 | 3.675 |
IH | 1.267 | 0.394 | 40 | 0.675 | 2.377 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.585 | 0.375 | 40 | 0.983 | 2.556 |
IH | 0.898 | 0.261 | 40 | 0.499 | 1.617 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 1.585 | 0.375 | 40 | 0.983 | 2.556 |
IH | 0.898 | 0.261 | 40 | 0.499 | 1.617 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.673 | 0.149 | 40 | 0.431 | 1.053 |
IH | 0.782 | 0.195 | 40 | 0.472 | 1.294 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.673 | 0.149 | 40 | 0.431 | 1.053 |
IH | 0.782 | 0.195 | 40 | 0.472 | 1.294 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.703 | 0.702 | 40 | 0.741 | 3.917 | 1 | 1.293 | 0.203 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.703 | 0.702 | 40 | 0.741 | 3.917 | 1 | 1.293 | 0.203 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.765 | 0.66 | 40 | 0.829 | 3.76 | 1 | 1.519 | 0.137 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.765 | 0.66 | 40 | 0.829 | 3.76 | 1 | 1.519 | 0.137 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.861 | 0.285 | 40 | 0.441 | 1.681 | 1 | −0.452 | 0.654 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.861 | 0.285 | 40 | 0.441 | 1.681 | 1 | −0.452 | 0.654 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.965 | 0.418 | 40 | 0.402 | 2.314 | 1 | −0.082 | 0.935 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.965 | 0.418 | 40 | 0.402 | 2.314 | 1 | −0.082 | 0.935 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.978 | 0.822 | 40 | 0.855 | 4.58 | 1 | 1.643 | 0.108 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.978 | 0.822 | 40 | 0.855 | 4.58 | 1 | 1.643 | 0.108 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 2.05 | 0.763 | 40 | 0.966 | 4.351 | 1 | 1.928 | 0.061 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 2.05 | 0.763 | 40 | 0.966 | 4.351 | 1 | 1.928 | 0.061 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
3.2 Density of Cleaved Caspase 3+ cells (EGL)
3.2.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 153.403 | 104.366 | 10,892.199 | 0.68 | 158.904 | 52.228 | 338.378 | 1.148 | 1.826 | 6 |
IH | 238.427 | 112.334 | 12,618.924 | 0.471 | 198.774 | 75.875 | 328.271 | −1.597 | 2.677 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 153.403 | 104.366 | 10,892.199 | 0.68 | 158.904 | 52.228 | 338.378 | 1.148 | 1.826 | 6 |
IH | 238.427 | 112.334 | 12,618.924 | 0.471 | 198.774 | 75.875 | 328.271 | −1.597 | 2.677 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 131.706 | 77.991 | 6,082.619 | 0.592 | 156.966 | 16.575 | 226.085 | −0.469 | −0.911 | 8 |
IH | 110.49 | 86.459 | 7,475.185 | 0.783 | 141.472 | 20.359 | 249.895 | 1.206 | 2.038 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 131.706 | 77.991 | 6,082.619 | 0.592 | 156.966 | 16.575 | 226.085 | −0.469 | −0.911 | 8 |
IH | 110.49 | 86.459 | 7,475.185 | 0.783 | 141.472 | 20.359 | 249.895 | 1.206 | 2.038 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 81.275 | 52.337 | 2,739.155 | 0.644 | 106.154 | 7.257 | 158.718 | 0.036 | −1.401 | 11 |
IH | 164.813 | 180.642 | 32,631.375 | 1.096 | 159.165 | 9.105 | 579.506 | 2.084 | 4.953 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 81.275 | 52.337 | 2,739.155 | 0.644 | 106.154 | 7.257 | 158.718 | 0.036 | −1.401 | 11 |
IH | 164.813 | 180.642 | 32,631.375 | 1.096 | 159.165 | 9.105 | 579.506 | 2.084 | 4.953 | 8 |
3.2.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Dens_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = Gamma("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
511.80 | 516.16 | 525.70 | 0.35 | 0.14 | 0.25 | 83.11 | 0.74 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
511.80 | 516.16 | 525.70 | 0.35 | 0.14 | 0.25 | 83.11 | 0.74 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
No potential outliers detected by the model.
❖ Model call:
```{r}
glmmTMB(formula = Dens_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
531.37 | 535.73 | 545.27 | 3.38e-05 | 1.53e-05 | 1.85e-05 | 78.35 | 91.49 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
531.37 | 535.73 | 545.27 | 3.38e-05 | 1.53e-05 | 1.85e-05 | 78.35 | 91.49 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
3.2.3 Effects Analysis
3.2.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 136.172 | 24.177 | (96.15, 192.85) | 27.676 | < .001 |
Condition1 | 0.853 | 0.151 | (0.60, 1.21) | -0.899 | 0.369 |
Z1 | 1.482 | 0.292 | (1.01, 2.18) | 1.997 | 0.046 * |
Z2 | 0.898 | 0.167 | (0.62, 1.29) | -0.578 | 0.563 |
Condition1 * Z1 | 0.975 | 0.190 | (0.67, 1.43) | -0.133 | 0.894 |
Condition1 * Z2 | 1.165 | 0.228 | (0.79, 1.71) | 0.778 | 0.437 |
Model: Dens_EGL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 136.172 | 24.177 | (96.15, 192.85) | 27.676 | < .001 |
Condition1 | 0.853 | 0.151 | (0.60, 1.21) | -0.899 | 0.369 |
Z1 | 1.482 | 0.292 | (1.01, 2.18) | 1.997 | 0.046 * |
Z2 | 0.898 | 0.167 | (0.62, 1.29) | -0.578 | 0.563 |
Condition1 * Z1 | 0.975 | 0.190 | (0.67, 1.43) | -0.133 | 0.894 |
Condition1 * Z2 | 1.165 | 0.228 | (0.79, 1.71) | 0.778 | 0.437 |
Model: Dens_EGL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.81 | 1 | 0.370 |
Z | 4.34 | 2 | 0.110 |
Condition:Z | 0.77 | 2 | 0.680 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 0.81 | 1 | 0.370 |
Z | 4.34 | 2 | 0.110 |
Condition:Z | 0.77 | 2 | 0.680 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 497.13 | 505.82 | -243.56 | 487.13 | |||
mod_full | 8 | 500.88 | 514.78 | -242.44 | 484.88 | 2.24 | 3 | 0.520 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | 497.13 | 505.82 | -243.56 | 487.13 | |||
mod_full | 8 | 500.88 | 514.78 | -242.44 | 484.88 | 2.24 | 3 | 0.520 |
3.2.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 116.091 | 26.905 | 40 | 72.673 | 185.45 |
IH | 159.725 | 42.966 | 40 | 92.739 | 275.095 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 116.091 | 26.905 | 40 | 72.673 | 185.45 |
IH | 159.725 | 42.966 | 40 | 92.739 | 275.095 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.727 | 0.258 | 40 | 0.355 | 1.49 | 1 | −0.899 | 0.374 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.727 | 0.258 | 40 | 0.355 | 1.49 | 1 | −0.899 | 0.374 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 201.754 | 57.247 | 40 | 113.701 | 357.998 |
Med | 122.317 | 31.897 | 40 | 72.211 | 207.193 |
Post | 102.318 | 23.548 | 40 | 64.26 | 162.914 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 201.754 | 57.247 | 40 | 113.701 | 357.998 |
Med | 122.317 | 31.897 | 40 | 72.211 | 207.193 |
Post | 102.318 | 23.548 | 40 | 64.26 | 162.914 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.649 | 0.554 | 40 | 0.837 | 3.251 | 1 | 1.49 | 0.144 |
Ant / Post | 1.972 | 0.655 | 40 | 1.007 | 3.86 | 1 | 2.043 | 0.048 * |
Med / Post | 1.195 | 0.373 | 40 | 0.636 | 2.247 | 1 | 0.572 | 0.571 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.649 | 0.554 | 40 | 0.837 | 3.251 | 1 | 1.49 | 0.144 |
Ant / Post | 1.972 | 0.655 | 40 | 1.007 | 3.86 | 1 | 2.043 | 0.048 * |
Med / Post | 1.195 | 0.373 | 40 | 0.636 | 2.247 | 1 | 0.572 | 0.571 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 167.619 | 61.773 | 40 | 79.588 | 353.022 |
IH | 242.84 | 103.644 | 40 | 102.494 | 575.361 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 167.619 | 61.773 | 40 | 79.588 | 353.022 |
IH | 242.84 | 103.644 | 40 | 102.494 | 575.361 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 121.445 | 38.946 | 40 | 63.518 | 232.198 |
IH | 123.196 | 52.017 | 40 | 52.48 | 289.204 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 121.445 | 38.946 | 40 | 63.518 | 232.198 |
IH | 123.196 | 52.017 | 40 | 52.48 | 289.204 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 76.859 | 22.233 | 40 | 42.834 | 137.912 |
IH | 136.208 | 47.993 | 40 | 66.824 | 277.634 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 76.859 | 22.233 | 40 | 42.834 | 137.912 |
IH | 136.208 | 47.993 | 40 | 66.824 | 277.634 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.69 | 0.387 | 40 | 0.222 | 2.142 | 1 | −0.662 | 0.512 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.69 | 0.387 | 40 | 0.222 | 2.142 | 1 | −0.662 | 0.512 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.986 | 0.531 | 40 | 0.332 | 2.929 | 1 | −0.027 | 0.979 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.986 | 0.531 | 40 | 0.332 | 2.929 | 1 | −0.027 | 0.979 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.564 | 0.255 | 40 | 0.227 | 1.405 | 1 | −1.268 | 0.212 |
contrast | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.564 | 0.255 | 40 | 0.227 | 1.405 | 1 | −1.268 | 0.212 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.7 | 0.488 | 40 | 0.171 | 2.861 | 1 | −0.512 | 0.612 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.7 | 0.488 | 40 | 0.171 | 2.861 | 1 | −0.512 | 0.612 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.223 | 0.773 | 40 | 0.341 | 4.384 | 1 | 0.319 | 0.751 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.223 | 0.773 | 40 | 0.341 | 4.384 | 1 | 0.319 | 0.751 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.747 | 1.112 | 40 | 0.482 | 6.327 | 1 | 0.876 | 0.386 |
Condition | ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.747 | 1.112 | 40 | 0.482 | 6.327 | 1 | 0.876 | 0.386 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log scale
- Tests are performed on the log scale
❖ Boxplot:
3.3 Proportion of Cleaved Caspase 3+ marking (EGL)
3.3.1 Data Exploration
❖ Distribution:
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.008 | 0.006 | 0 | 0.681 | 0.009 | 0.002 | 0.017 | 0.775 | 0.919 | 6 |
IH | 0.014 | 0.007 | 0 | 0.484 | 0.012 | 0.004 | 0.02 | −1.127 | 2.173 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.008 | 0.006 | 0 | 0.681 | 0.009 | 0.002 | 0.017 | 0.775 | 0.919 | 6 |
IH | 0.014 | 0.007 | 0 | 0.484 | 0.012 | 0.004 | 0.02 | −1.127 | 2.173 | 4 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.008 | 0.005 | 0 | 0.615 | 0.008 | 0.001 | 0.015 | −0.225 | −0.224 | 8 |
IH | 0.006 | 0.005 | 0 | 0.866 | 0.009 | 0.001 | 0.015 | 1.397 | 2.091 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.008 | 0.005 | 0 | 0.615 | 0.008 | 0.001 | 0.015 | −0.225 | −0.224 | 8 |
IH | 0.006 | 0.005 | 0 | 0.866 | 0.009 | 0.001 | 0.015 | 1.397 | 2.091 | 5 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.004 | 0.003 | 0 | 0.683 | 0.006 | 0 | 0.009 | 0.14 | −1.563 | 11 |
IH | 0.009 | 0.011 | 0 | 1.128 | 0.009 | 0 | 0.033 | 2.097 | 5.046 | 8 |
Condition | Mean | SD | Variance | CoV | IQR | Min | Max | Skewness | Kurtosis | n |
---|---|---|---|---|---|---|---|---|---|---|
N | 0.004 | 0.003 | 0 | 0.683 | 0.006 | 0 | 0.009 | 0.14 | −1.563 | 11 |
IH | 0.009 | 0.011 | 0 | 1.128 | 0.009 | 0 | 0.033 | 2.097 | 5.046 | 8 |
3.3.2 Models & Diagnostics
Exploring some Generalized Linear (Mixed) model candidates:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = beta_family("logit"), REML = TRUE, ziformula = ~0,
dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-310.42 | -306.05 | -296.52 | 0.42 | 0.16 | 0.31 | 4.70e-03 | 281.25 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-310.42 | -306.05 | -296.52 | 0.42 | 0.16 | 0.31 | 4.70e-03 | 281.25 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
❖ Model call:
```{r}
glmmTMB(formula = Prop_C_EGL ~ Condition * Z + (1 | Mouse), data = data,
family = gaussian("log"), REML = TRUE, ziformula = ~0, dispformula = ~1)
```
❖ Performance:
performance::performance(mod)
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-289.18 | -284.81 | -275.28 | 1.00 | 0.45 | 1.00 | 4.46e-03 | 5.22e-03 |
AIC | AICc | BIC | R2_conditional | R2_marginal | ICC | RMSE | Sigma |
---|---|---|---|---|---|---|---|
-289.18 | -284.81 | -275.28 | 1.00 | 0.45 | 1.00 | 4.46e-03 | 5.22e-03 |
❖ Residuals:
performance::check_model(
mod, panel = FALSE,
check = c("pp_check", "qq", "reqq", "linearity", "homogeneity")
)
❖ Predictions:
Simulating data from the model for pseudo “Posterior Predictive” plots.
♦ Simulated data vs observed data:
♦ Simulated statistics vs observed ones:
❖ Potential outliers:
3.3.3 Effects Analysis
3.3.3.1 Coefficients
❖ All effects (Wald):
parameters::parameters(
mod, component = "conditional", effects = "fixed",
exponentiate = should_exp(mod), p_adjust = "none", summary = TRUE, digits = 3
)
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.008 | 0.001 | (6.03e-03, 0.01) | -29.024 | < .001 |
Condition1 | 0.831 | 0.132 | (0.61, 1.13) | -1.166 | 0.243 |
Z1 | 1.350 | 0.195 | (1.02, 1.79) | 2.074 | 0.038 * |
Z2 | 0.958 | 0.141 | (0.72, 1.28) | -0.291 | 0.771 |
Condition1 * Z1 | 0.861 | 0.124 | (0.65, 1.14) | -1.038 | 0.299 |
Condition1 * Z2 | 1.256 | 0.185 | (0.94, 1.68) | 1.549 | 0.121 |
Model: Prop_C_EGL ~ Condition * Z (42 Observations) |
Parameter | Coefficient | SE | 95% CI | z | p |
---|---|---|---|---|---|
(Intercept) | 0.008 | 0.001 | (6.03e-03, 0.01) | -29.024 | < .001 |
Condition1 | 0.831 | 0.132 | (0.61, 1.13) | -1.166 | 0.243 |
Z1 | 1.350 | 0.195 | (1.02, 1.79) | 2.074 | 0.038 * |
Z2 | 0.958 | 0.141 | (0.72, 1.28) | -0.291 | 0.771 |
Condition1 * Z1 | 0.861 | 0.124 | (0.65, 1.14) | -1.038 | 0.299 |
Condition1 * Z2 | 1.256 | 0.185 | (0.94, 1.68) | 1.549 | 0.121 |
Model: Prop_C_EGL ~ Condition * Z (42 Observations) |
❖ Main effects (Wald Chi-Square):
car::Anova(mod, type = 3)
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.36 | 1 | 0.240 |
Z | 5.60 | 2 | 0.060 |
Condition:Z | 2.43 | 2 | 0.300 |
term | statistic | df | p.value |
---|---|---|---|
Condition | 1.36 | 1 | 0.240 |
Z | 5.60 | 2 | 0.060 |
Condition:Z | 2.43 | 2 | 0.300 |
❖ Main effects (Likelihood Ratio Test):
LRT(mod, pred = "Condition")
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -325.43 | -316.74 | 167.71 | -335.43 | |||
mod_full | 8 | -323.54 | -309.63 | 169.77 | -339.54 | 4.11 | 3 | 0.250 |
model | df | aic | bic | log_lik | deviance | chisq | chi_df | pr_chisq |
---|---|---|---|---|---|---|---|---|
mod_reduced | 5 | -325.43 | -316.74 | 167.71 | -335.43 | |||
mod_full | 8 | -323.54 | -309.63 | 169.77 | -339.54 | 4.11 | 3 | 0.250 |
3.3.3.2 Marginal Effects
Marginal means & Contrasts for each predictor:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.007 | 0.002 | 40 | 0.004 | 0.011 |
IH | 0.01 | 0.002 | 40 | 0.006 | 0.016 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.007 | 0.002 | 40 | 0.004 | 0.011 |
IH | 0.01 | 0.002 | 40 | 0.006 | 0.016 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.691 | 0.219 | 40 | 0.364 | 1.311 | 1 | −1.166 | 0.250 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.691 | 0.219 | 40 | 0.364 | 1.311 | 1 | −1.166 | 0.250 |
- Results are averaged over the levels of: Z
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = pred, type = "response")
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.011 | 0.002 | 40 | 0.007 | 0.017 |
Med | 0.008 | 0.002 | 40 | 0.005 | 0.012 |
Post | 0.006 | 0.001 | 40 | 0.004 | 0.01 |
Z | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
Ant | 0.011 | 0.002 | 40 | 0.007 | 0.017 |
Med | 0.008 | 0.002 | 40 | 0.005 | 0.012 |
Post | 0.006 | 0.001 | 40 | 0.004 | 0.01 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = pred, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.409 | 0.367 | 40 | 0.833 | 2.386 | 1 | 1.318 | 0.195 |
Ant / Post | 1.746 | 0.412 | 40 | 1.084 | 2.812 | 1 | 2.365 | 0.023 * |
Med / Post | 1.239 | 0.299 | 40 | 0.761 | 2.017 | 1 | 0.889 | 0.379 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
Ant / Med | 1.409 | 0.367 | 40 | 0.833 | 2.386 | 1 | 1.318 | 0.195 |
Ant / Post | 1.746 | 0.412 | 40 | 1.084 | 2.812 | 1 | 2.365 | 0.023 * |
Med / Post | 1.239 | 0.299 | 40 | 0.761 | 2.017 | 1 | 0.889 | 0.379 |
- Results are averaged over the levels of: Condition
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot:
❖ Marginal Means:
emmeans(mod, specs = emmeans_formula, type = "response")
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.003 | 40 | 0.004 | 0.015 |
IH | 0.015 | 0.005 | 40 | 0.008 | 0.028 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.003 | 40 | 0.004 | 0.015 |
IH | 0.015 | 0.005 | 40 | 0.008 | 0.028 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.002 | 40 | 0.005 | 0.014 |
IH | 0.008 | 0.003 | 40 | 0.004 | 0.015 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.008 | 0.002 | 40 | 0.005 | 0.014 |
IH | 0.008 | 0.003 | 40 | 0.004 | 0.015 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.005 | 0.001 | 40 | 0.003 | 0.009 |
IH | 0.008 | 0.002 | 40 | 0.005 | 0.015 |
Condition | response | SE | df | lower.CL | upper.CL |
---|---|---|---|---|---|
N | 0.005 | 0.001 | 40 | 0.003 | 0.009 |
IH | 0.008 | 0.002 | 40 | 0.005 | 0.015 |
- Confidence level used: 0.95
- Intervals are back-transformed from the logit scale
❖ Contrasts:
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(method = "pairwise", adjust = "none", infer = TRUE)
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.512 | 0.223 | 40 | 0.212 | 1.236 | 1 | −1.535 | 0.133 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.512 | 0.223 | 40 | 0.212 | 1.236 | 1 | −1.535 | 0.133 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.09 | 0.485 | 40 | 0.444 | 2.678 | 1 | 0.194 | 0.847 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.09 | 0.485 | 40 | 0.444 | 2.678 | 1 | 0.194 | 0.847 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.591 | 0.232 | 40 | 0.268 | 1.305 | 1 | −1.342 | 0.187 |
contrast | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.591 | 0.232 | 40 | 0.268 | 1.305 | 1 | −1.342 | 0.187 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
emmeans(mod, specs = emmeans_formula, type = "response") |>
contrast(interaction = "pairwise", by = NULL, adjust = "none", infer = T)
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.47 | 0.244 | 40 | 0.165 | 1.341 | 1 | −1.456 | 0.153 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.47 | 0.244 | 40 | 0.165 | 1.341 | 1 | −1.456 | 0.153 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.867 | 0.407 | 40 | 0.335 | 2.24 | 1 | −0.305 | 0.762 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 0.867 | 0.407 | 40 | 0.335 | 2.24 | 1 | −0.305 | 0.762 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.845 | 0.886 | 40 | 0.698 | 4.872 | 1 | 1.274 | 0.210 |
Condition | odds.ratio | SE | df | lower.CL | upper.CL | null | t.ratio | p.value |
---|---|---|---|---|---|---|---|---|
N / IH | 1.845 | 0.886 | 40 | 0.698 | 4.872 | 1 | 1.274 | 0.210 |
- Confidence level used: 0.95
- Intervals are back-transformed from the log odds ratio scale
- Tests are performed on the log odds ratio scale
❖ Boxplot: